Quaternion Neural Network on Detecting Diabetic Retinopathy Using Fundus Images

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 13

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICIRT01_002

تاریخ نمایه سازی: 9 آذر 1404

چکیده مقاله:

Diabetic retinopathy (DR) is an eye disease due to the effects of diabetes on the eye, and its damage on the nerve tissue in the retina. DR involves vascular malformations that is strongly correlated with the duration of diabetes and is the leading cause of blindness in adults. The disease presents various lesions, the most significant of which are microaneurysms, exudates, and retinal vessel malformations. Retinal images assist physicians diagnosing and monitoring DR progression, while image processing and machine vision methods enhance the speed and accuracy of diagnosis. A review of existing DR diagnostic methods reveals that feature extraction from retinal images followed by classification using a convolutional neural network yields the best results. This study proposes a diagnostic framework that employs a quaternion convolutional neural network to improve DR detection accuracy. The dataset used, named Al-Zahra, consists of ۳,۸۷۲ retinal fundus images captured with a Canon CX-۱ device at Al-Zahra Ophthalmology Hospital in Zahedan. Simulation results on the Al-Zahra database demonstrate high detection accuracy: ۹۸.۸۷% for retinal vessel malformations, ۹۸.۳۹% for exudates, and ۹۸.۱۳% for microaneurysms.

نویسندگان

Seyed Ebrahin Hosseini

Dept. of Communications Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Farahnaz Mohanna

Dept. of Communications Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Mohammad Hossain Validad

Dept. of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran