Adaptive AI-Driven Mobile Health Platforms for Precision Management of Chronic Conditions in Remote Settings: A Systematic Review and Meta-Analysis

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 51

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

HWCONF20_003

تاریخ نمایه سازی: 14 مهر 1404

چکیده مقاله:

Background and Objective: The rising prevalence of chronic diseases and limited access to healthcare in remote areas highlight the need for adaptive AI-driven mobile health platforms. These platforms enable personalized interventions, continuous monitoring, and improved patient outcomes. This systematic review and meta-analysis aims to evaluate the applications, effectiveness and challenges of adaptive AI-driven mobile health platforms in the remote management of chronic conditions. Methods: Following PRISMA guidelines, a systematic review and meta-analysis was conducted by searching in PubMed, Scopus, Web of Science, and IEEE Xplore for articles published between ۲۰۱۴ and ۲۰۲۵. After screening and applying inclusion criteria, ۳۶ high-quality studies were included. Results: Among the selected studies, ۷۰% focused on diabetes management, ۵۵% on cardiovascular disease, and ۴۰% on respiratory conditions. Common interventions included AI-powered personalized reminders (۲۴ studies), predictive analytics for symptom monitoring (۲۰), and adaptive coaching modules (۱۵). These platforms improved adherence to medication, lifestyle modifications, and early detection of complications. Adaptive algorithms, particularly reinforcement learning models, showed accuracy rates between ۸۲% and ۹۰% in predicting patient risk and recommending personalized interventions. Integration of real-time data from wearable devices enhanced continuous monitoring and patient engagement. Conclusion: Adaptive AI-driven mobile health platforms offer promising solutions for precision management of chronic diseases in remote settings. Future studies should focus on standardizing evaluation frameworks, addressing data privacy concerns, and optimizing AI algorithms for broader applicability. Keywords: AI, mobile health, chronic disease management, remote healthcare, precision medicine

نویسندگان

Elnaz Bornasi

Master's student in Health Information Technology, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran. Student Committee for Education Development, Lorestan University of Medical Sciences, Khorramabad, Iran.