A Systematic Review of Machine Learning Algorithms for Early Detection and Prevention of Depression

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 96

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

HWCONF20_002

تاریخ نمایه سازی: 14 مهر 1404

چکیده مقاله:

Background and Objective: The rising prevalence of depression and limited access to mental health services underscore the need for machine learning algorithms in early diagnosis and prevention. The objective of this study is to conduct a systematic review to evaluate the applications and effectiveness of these algorithms in improving mental health outcomes. Methods: A systematic review was conducted following PRISMA guidelines by searching PubMed, Scopus, Web of Science and IEEE Xplore for articles published from ۲۰۱۴ to ۲۰۲۵. After screening and applying inclusion criteria, ۳۸ high-quality studies were selected. Results: Sixty-eight percent of studies focused on depression diagnosis, ۵۵% on prevention, and ۴۰% on continuous mental health monitoring. Data sources comprised electronic questionnaires, textual analyses, and behavioral data. Deep neural networks, especially transformer models like BERT and GPT, achieved accuracy between ۸۵% and ۹۱% in predicting depressive symptoms ۱۰ to ۱۲ days before clinical diagnosis. These models effectively identified hidden behavioral patterns and enabled ongoing mental health monitoring. Conclusion: Machine learning algorithms are powerful tools for diagnosing and preventing depression; however, challenges such as data privacy and methodological standardization remain. Future studies should aim to improve accuracy and develop ethical frameworks. Keywords: Machine learning, depression, early detection, mental health, neural networks

نویسندگان

Elnaz Bornasi

Master's student in Health Information Technology, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.