Hybrid model formulation for the unsteady state simulation of a packed bed reactor for CO2 hydrogenation to methanol
محل انتشار: دهمین کنگره ملی مهندسی شیمی ایران
سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,895
فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NICEC10_343
تاریخ نمایه سازی: 6 بهمن 1385
چکیده مقاله:
Carbon dioxide emition is well known as the main source of global warming and reduction of carbon dioxide by hydrogen is the interesting topic for prevention of this side effect. For studying the CO2 removal a hybrid Neural Network Model (NNM) was developed to estimate outlet of a differential methanol reactor as a function of time, temperature, pressure CO, CO2, H2O and H2 mole fractions. The hybrid model consists of two parts; a mechanistic model and a neural model. The mechanistic model consist of heat transfer, mass transfer and pressure drop equations which calculate the effluent temperature of a differential reactor by taking outlet mole fraction from neural model. Neural model provides estimation of outlet mole fraction of a differential reactor. This estimation is fed to mechanistic model. The prepared hybrid model is used to simulate and identify an industrial methanol reactor. The bed of reactor was assimilated to pile of layers, each corresponding to a Neural Network
(NN) so the associate NN could predict outlet composition of each layer as a function of time. The model was successfully tested with plant experimental data. The insights of this research indicate a very fast responding model in comparison to traditional models to demonstrate CO2 reduction as a function of time and reactor length. Variation of temperature and other compositions with time and bed height are investigated in this article.
کلیدواژه ها:
نویسندگان
ZAHEDI
Department of Petroleum and Chemical Engineering, Shiraz University, Shiraz bDepartment of Chemical Engineering, University of Razi, Kermanshah, Iran
JAHANMIRI
Department of Petroleum and Chemical Engineering, Shiraz University, Shiraz
RAHIMPOR
Department of Petroleum and Chemical Engineering, Shiraz University, Shiraz
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :