Determination of the Reservoir Model from Well Test Data by using Artificial Neural Network

سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,430

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NICEC10_108

تاریخ نمایه سازی: 6 بهمن 1385

چکیده مقاله:

These days, neural networks have a wide range of usage in different fields of engineering. In this work this method is used to determine the reservoir model. Model identification followed by parameter estimation is a kind of visual process. Pressure Derivative Type curves which show more features are usually used to determine reservoir model, but this identification is based on the shape of the curve not on any calculation. So, it is difficult to change this kind of visual process to an algorithm that can be used by computers. In fact model identification is a pattern recognition which is best done by an Artificial Neural Network. If neural networks are learned successfully, they are able to categorize different shapes to different groups due to their visual characterization. So, these networks are so useful and are used here. In this work it is shown how to train, examine and use neural networks to analyze well test data. Input of neural network is fifty points of normal pressure derivative type curve. Each network is trained based on a specific model. The output of the network is number between zero and one. This number gives the probability of the occurrence of the fed curve to the related model. The tuned model provided a high accuracy.

کلیدواژه ها:

نویسندگان

Kharrat

Petroleum University of technology, PUT Tehran research center

Razavi

Petroleum University of technology, PUT Tehran research center

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Robert.C. Earlougher Jr, ،Advanced in Well Test Analysis?, SPE monograph, ...
  • C.S. Matthews, D.G. Russel , ،Pressure Build up and Flow ...
  • Lecture Notes by Dr. Shadizadeh, ،0 Advanced in Transient wel ...
  • Dr. Bagher Manhaj, «Artificial Inelegance", Vols 1, 2 _ Polytechnic ...
  • H.J. Ramey Jr., ،$Short Time Well Test Interpretation in the ...
  • Robert C. Earlougher Jr., keith M. Kersch, «Analysis Short Time ...
  • Dominique Bourdet, J.A. Ayoub, Y.M. Pirard, _ of the Pressure ...
  • G. Stewart, Kui Fu Du, ،Fracture Selection and Extraction for ...
  • Oliver F. Aliain, Ronald N. Horne, ? Use of Artificial ...
  • A.U. Al-Kaabi, W.J. Lee, ،0An Artificial Neural Network Approach _ ...
  • H.Scott Lane, W. John Lee , A. Ted Watson, ،0An ...
  • Oliver Aliain, O.P. Houze, _ Practical Artiticial Intelligence In Well ...
  • ، h Iranian Chemical Engineering Congress (IChEC10), Sistan _ Balochestan ...
  • Part 3: _ Catalysis 858 _ 13. O.P. Houze, O.F. ...
  • Suwart Athi chanagorn, Roland N. Home, "Automatic Parameter Estimation from ...
  • Anraku T., Horne R.N., "Discrim ination between Reservoir Models in ...
  • Wonmo Sung, Inhang Yoo, Seunghoon Ra, Heungiun Park, . "Development ...
  • Yuanzhong Deng, Qinlei Chen, Jiahong wang, "An Artificial Neural Network ...
  • Daungkaew, F. Hollaender, A.C. Gringarten, "Frequently Asked Questions in Well ...
  • Marcell Bougeoi, Elf Aquitaine, "Well Test Interpretation using Laplace space ...
  • Gerald, Wheatley, "Applied Numerical Analysis", Sixth Edition, Edition Wesley ...
  • ، h Iranian Chemical Engineering Congress (IChEC10), Sistan _ Balochestan ...
  • نمایش کامل مراجع