Effect of recorded data on hydroclimatological study in semi-arid zones
محل انتشار: اولین کنفرانس ملی هیدرولوژی مناطق نیمه خشک
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,053
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
KSAHC01_001
تاریخ نمایه سازی: 29 بهمن 1392
چکیده مقاله:
More accurate forecasting of monthly rainfall is significantly important in hydroclimatological studeis such as drought forecasting in agriculture, irrigation schedule, water resources management, and crop pattern design. In this paper, ability of time series models in forecasting the rainfall according to the climate conditions is estimated. For this purpose, rainfall data of four different climates in Iran was selected. Using the data amounts of rainfall were forecasted by time series models for one next year. In first method number of observation data for model calibration were 60, and then this increase to the 120 and 588 data. Time series models have found a widespread application in many practical sciences. In addition, rainfall forecasting is done by some methods such as time series models, satellite imagery, and artificial neural networks. However, according to the deficit data in most rainfall forecasting, number of required observation data always been questioned. Therefore, this paper attempts to present number of required observation data according to the climate conditions. By comparing R2 of the models, it was determined that time series models were better appropriate to rainfall forecasting in semi-arid climate. Number of required observation data for forecasting of one next year was 60 rainfall data in semi-arid climate
کلیدواژه ها:
: Hydroclimatological study ، Length of recorded data ، Rainfall forecasting ، Semi-arid zones ، Time series analysis
نویسندگان
Mohammad Valipour
Irrigation and Drainage Engineering College, College of Abureyhan, University of Tehran,
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :