A Novel Multiple Kernel Learning Approach for Semi-Supervised Clustering
محل انتشار: هشتمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,265
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP08_174
تاریخ نمایه سازی: 9 بهمن 1392
چکیده مقاله:
Distance metrics are widely used in various machinelearning and pattern recognition algorithms. A main issue inthese algorithms is choosing the proper distance metric. In recentyears, learning an appropriate distance metric has become a veryactive research field. In the kernelised version of distance metriclearning algorithms, the data points are implicitly mapped into ahigher dimensional feature space and the learning process isperformed in the resulted feature space. The performance of thekernel-based methods heavily depends on the chosen kernelfunction. So, selecting an appropriate kernel function and/ortuning its parameter(s) impose significant challenges in suchmethods. The Multiple Kernel Learning theory (MKL) addressesthis problem by learning a linear combination of a number ofpredefined kernels. In this paper, we formulate the MKLproblem in a semi-supervised metric learning framework. In theproposed approach, pairwise similarity constraints are used toadjust the weights of the combined kernels and simultaneouslylearn the appropriate distance metric. Using both synthetic andreal-world datasets, we show that the proposed methodoutperforms some recently introduced semi-supervised metriclearning approaches.
کلیدواژه ها:
Distance Metric Learning ، Multiple Kernel Learning (MKL) ، Pairwise similarity constraints ، Semi-supervised clustering
نویسندگان
T Zare
Signal Processing Research Group Electrical and Computer Engineering Department, Yazd University
M.T Sadeghi
Signal Processing Research Group Electrical and Computer Engineering Department, Yazd University
H.R Abutalebi
Signal Processing Research Group Electrical and Computer Engineering Department, Yazd University