LDA-ML: A Hybrid DDoS Detection Attacks in SDN Environment using Machine Learning

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 34

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IAICONF01_023

تاریخ نمایه سازی: 31 اردیبهشت 1404

چکیده مقاله:

In today's world, DDoS attacks are becoming more common and complex; thus, they constitute a great challenge for network security under the auspices of SDN. The research effort described here proposes an integrated hybrid model called "LDA-ML," which leverages some state-of-the-art machine learning methods: LDA, naive bayes, random forest, and logistic regression. We optimize the data analysis process by leveraging LDA for feature selection and dimensionality reduction, followed by a sequential application of the classifiers to exploit their strengths. Evaluated on the CICDDoS-۲۰۱۹ dataset, the proposed model has achieved an outstanding accuracy of ۹۸.۹۸%, indicating the efficacy of the model in correctly classifying benign versus attack traffic. All of the above underlines the robustness of the proposed LDA-ML model, pointing to great potential for its application to continuously improve cybersecurity strategies against DDoS threats in SDN architectures. This holistic approach offers improvements in detection, while it also enriches diagnostic insights-an important contribution to finding effective security solutions in increasingly dynamic network environments.

کلیدواژه ها:

نویسندگان

Alireza Rezaei

Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

Amineh Amini

Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran