A Master-Slave Approach for Simultaneously Controlling Two Drones when Carrying an Object

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 16

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IAICONF01_011

تاریخ نمایه سازی: 31 اردیبهشت 1404

چکیده مقاله:

This paper proposes a master-slave approach to simultaneously control two drones with the aim of carrying an object toward a goal. The proposed method utilizes the Double Deep Q-Learning (DDQN) technique to train a master agent to be able to carry an object toward a goal with the help of a slave agent. This procedure is implemented such that the master agent gathers the observations and specifies the actions to be made by itself and the slave agent. Indeed, the slave agent just applies a predefined action and does not process any input for producing the output. This manner of learning leads to a unified convergence to an optimal solution compared to the situation in which each agent is trained separately. To verify the functionality of the proposed method, the algorithm is examined in the webots simulation environment. The simulations show that the introduced method has good performance when controlling the drones to reach the goal. The introduced method, other than algorithmic benefits which lead to a faster convergence of the model, suggests some reduction in the processing demand. The reason is that the learning procedure is guided by one of the agents and consequently only one of the agents is responsible for doing the calculations that lead to choosing the action. In this scenario, the slave agent does not require any processing resources for choosing the action and just simply applies a predefined action dictated by the master agent.

نویسندگان

Seyyed Mohammad Ali Ardehali

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

Amin Faraji

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

Monireh Abdoos

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

Armin Salimi-Badr

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran