Subspace/Discriminate Ensemble-based Machine Learning on Visible/Near-infrared Spectra as an Effective Procedure for Non-destructive Safety Assessment of Spinach

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 89

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_BBR-4-1_005

تاریخ نمایه سازی: 14 فروردین 1404

چکیده مقاله:

In this study, an orthogonal signal correction (OSC)-based partial least squares (PLS) model and ensemble-based machine learning classifiers, combined with visible/near-infrared (Vis/NIR) spectroscopy, were proposed for non-destructive nitrate prediction in spinach leaves and sample safety evaluation. The OSC method was applied before developing the PLS model to enhance prediction accuracy. Spinach safety assessment was based on the maximum permissible nitrate accumulation level. Various ensemble classifiers, including subspace/discriminate, subspace/k-nearest neighbor, boosted trees, bagged trees, and random under-sampling boosted trees, were evaluated for distinguishing safe and unsafe samples. The best classification results were obtained using the subspace/discriminate ensemble classifier, achieving sensitivity, specificity, and accuracy of ۹۵.۲۴%, ۹۸.۷۳%, and ۹۸.۴۵% for the calibration dataset and ۱۰۰%, ۹۱.۸%, and ۹۲.۳۱% for external validation. The receiver operating characteristic (ROC) curve indicated superior discrimination ability, with an area under the curve (AUC) of ۰.۹۵. Additionally, the best model demonstrated a high prediction speed of approximately ۲۸۰ observations per second. These findings highlight that combining Vis/NIR spectroscopy with the subspace/discriminate ensemble classifier provides an effective, rapid, and non-invasive method for detecting nitrate contamination in spinach leaves, making it a promising approach for food safety monitoring.

نویسندگان

Bahareh Jamshidi

Smart Agricultural Research Department, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

Najmeh Yazdanfar

Iranian Institute of Research and Development in Chemical Industries, ACECR, Karaj, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ashour, A. S., Guo, Y., Hawas, A. R., & Xu, ...
  • INSO (Iranian National Standardization Organization). (۲۰۱۳). Maximum levels for nitrates ...
  • نمایش کامل مراجع