Exploring the Effects of Nonstationary and Diverse Covariates on Extreme Hot Events

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ECOPER-11-4_001

تاریخ نمایه سازی: 2 دی 1403

چکیده مقاله:

Aims: Over the past twenty years, Iran has experienced a rise in extreme temperatures, particularly in hot events like extreme temperatures, as indicated by recent studies. This research seeks to analyze the annual maximum temperatures (AMT) in the dry Province of Kerman, Iran, focusing on both stationary (S) and nonstationary (NS) behavior. Materials & Methods: Trend, homogeneity, and stationarity tests were utilized to identify the critical characteristics of the AMTs from ۱۹۷۹ to ۲۰۱۹. Frequency analysis of the AMTs was conducted using both stationary Generalized Extreme Value (S-GEV) and nonstationary GEV (NS-GEV) models, estimating distribution parameters through a maximum likelihood estimator(MLE). In addition to the time-varying NS-GEV (TNS-GEV) investigations, soil moisture (SM) was incorporated as a covariate.  Findings: Results demonstrate that, compared to the S-GEV case, the NS-GEV frequency analyses significantly impact the return values of the AMTs, leading to an increase. The NS-GEV estimations for ۵۰-year return levels were significantly higher than those in the S-GEV. The study’s findings revealed that the average Akaike Information Criterion (AIC) for both the S-GEV and TNS-GEV estimations decreased from ۱۱۰ to ۷۱ across all ۱۲ selected stations in Kerman Province. The AIC value for the NS-GEV with the soil moisture (SM) covariate was approximately ۹۴. Thus, the TNS-GEV frequency analysis of AMTs resulted in improved AIC values compared to the NS-GEV with soil moisture as the covariate. Conclusion: Given the nonstationary (NS) conditions caused by natural and/or human activities, it is recommended to utilize NS frequency analysis for estimating hydrologic variables across different design periods. It has been noted that NS-GEV frequency analyses lead to higher return levels of AMTs than S-GEV analyses.

نویسندگان

Sedigheh Anvari

Assistant Prof. Department of Ecology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran, Email: anvari.t@gmail.com (Corresponding author).

Mahnoosh Moghaddasi

Department of Water Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • AghaKouchak A., Nasrollahi N. Semi-parametric and parametric inference of extreme ...
  • Akaike H. A new look at the statistical model identification. ...
  • Aksu H. Nonstationary analysis of the extreme temperatures in Turkey. ...
  • Andreadis K.M., Lettenmaier D.P. Trends in ۲۰th century drought over ...
  • Anvari, S., Moghaddasi, M., & Bagheri, M. H. (۲۰۲۳). Drought ...
  • Anvari S., Moghaddasi, M. Historical Changes of Extreme Temperature in ...
  • Anvari, S., Moghaddasi M. Bagheri M. H. Drought mitigation through ...
  • Archfield S.A., Hirsch R.M., Viglione A., Blöschl G. Fragmented patterns ...
  • Babaeian I., Karimian M., Modirian R. Mirzaei E. Future climate ...
  • Berghuijs W.R., Allen S.T., Harrigan S., Kirchner J.W. Growing spatial ...
  • Cheng L., Gilleland E., Heaton M.J., AghaKouchak A. Empirical Bayes ...
  • Coles S., Bawa J., Trenner L., Dorazio P. An introduction ...
  • Debele S.E., Bogdanowicz E., Strupczewski W.G. Around and about an ...
  • Delavar, S., Anvari, S., Najafzadeh, M., & Fathian, F. (۲۰۲۳). ...
  • Delgado J.M., Apel H., Merz B. Flood trends and variability ...
  • Donat M., Alexander L., Yang H., Durre I., Vose R., ...
  • Donat M.G., Alexander L.V., YangH., Durre I., Vose R., Dunn ...
  • Efron B. Maximum Likelihood and Decision Theory. Ann Stat. ۱۹۸۲; ...
  • Emmanouil S, Langousis A, Nikolopoulos EI, Anagnostou EN. The Spatiotemporal ...
  • Ganeshi N. G., Mujumdar M., Krishnan Goswami R.M. Understanding the ...
  • Gilleland E., Ribatet M., Stephenson A.G. A software review for ...
  • Gilleland E., Katz R.W. extRemes ۲.۰: an extreme value analysis ...
  • Hao Z., Hao F., Singh V.P., Ouyang W. Quantitative risk ...
  • Hawkes P.J., Gonzalez-Marco D., Sánchez-Arcilla A., Prinos P. Best practice ...
  • Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi, A., ...
  • Hersbach H., deRosnay P., Bell B. Operational global reanalysis: progress, ...
  • Hohenegger C., Brockhaus P., Bretherton C. S., Schär C. The ...
  • IPCC, ۲۰۱۲. Glossary of terms. in: managing the risks of ...
  • Jowkar L, Panahi F, Sadatinejad S, Shakiba A. The Spatio-Temporal ...
  • Ghavidel, R. Y., Rezaee, M., & Farajzadeh, A. M. (۲۰۱۶). ...
  • Katz R. Statistics of extremes in climate change. Climatic Change. ...
  • Katz R.W., Brown B.G. Extreme events in a changing climate: ...
  • Katz R.W., Parlange M.B., Naveau P. Statistics of extremes in ...
  • Kendall M.G. Rank Correlation Methods. New York, NY: Oxford University ...
  • Li L., Zhang L., Xia J., Gippel C. J., Wang ...
  • Miralles D.G., Teuling A.J., Van Heerwaarden, C.C., Vilà-Guerau J. Mega-heatwave ...
  • Mitchell T.D. Jones P.D. An improved method of constructing a ...
  • Moghaddasi M., Anvari S., Akhondi N. A trade-off analysis of ...
  • Moghaddasi M., Anvari S., Mohammadi T. Comparison of extreme value ...
  • New M., Hulme M., Jones P. Representing twentieth-century space–time climate ...
  • Pettitt A.N. A non-parametric approach to the change point problem. ...
  • Razmi A., Golian S., Zahmatkesh Z. Non-stationary frequency analysis of ...
  • Salarijazi M., Ghorbani K., Mohammadi M., Ahmadianfar I., Mohammadrezapour O., ...
  • Sen P.K. Estimates of the regression coefficient based on Kendall’s ...
  • Spinoni J., Naumann G., Vogt J.V. Pan-European seasonal trends and ...
  • Teuling A.J., Seneviratne S.I. Contrasting spectral changes limit albedo impact ...
  • Trenberth K.E., Paolino D.A. The Northern Hemisphere sea-level pressure data ...
  • Vanem E. Non-stationary extreme value models to account for trends ...
  • Westra S., Alexander L.V., Zwiers F. W. Global increasing trends ...
  • Whan K., Zscheischler J., Orth R., Shongwe M., Rahimi M., ...
  • Zamani R., Berndtsson R. Evaluation of CMIP۵ models for west ...
  • نمایش کامل مراجع