Artificial neural network sensorless direct torque control of two parallel-connected five-phase induction machines

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 42

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-18-3_010

تاریخ نمایه سازی: 12 آذر 1403

چکیده مقاله:

Conventional direct torque control (DTC) improves the dynamic performance of the five-phase induction machine (FPIM). Nevertheless, it suffers from significant drawbacks of high stator flux and electromagnetic torque ripples. Moreover, the DTC technique relies on an open-loop estimator for accurate stator flux module and position knowledge. However, this method is subjected to substandard performance, mainly during the low-speed operation range. Therefore, a sliding mode sensorless stator flux and rotor speed DTC based on an artificial neural network (DTC-ANN) for two parallel-connected FPIMs is discussed to tackle the problems above. This approach optimizes the DTC performance by replacing the two hysteresis controllers (HC) and the look-up table. As for the poor estimation drawback, the sliding mode observer (SMO) offers a robust estimation and reconstruction of the FPIM variables and eliminates the need for additional sensors, increasing the system’s reliability. The present results verify and compare the performance of the control scheme.

کلیدواژه ها:

Five-phase induction motor (FPIM) ، Direct torque control (DTC) ، Artificial Neural Network (ANN) ، Parallelconnected two-motor drive ، Sensorless control ، Sliding mode observer (SMO)