Smart maintenance strategies in combined cycle power plant

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 117

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCARME-14-1_003

تاریخ نمایه سازی: 28 آبان 1403

چکیده مقاله:

This research investigates the effectiveness of various vibration data acquisition techniques coupled with different machine learning models for detecting anomalies and classifying them. To this end, synthetic vibration data was generated for techniques such as eddy current proximity transducers (ECPT), accelerometer sensor, blade tip timing, laser doppler vibrometer (LDV), and strain gauge. Afterward, the data was pre-processed and used to train gradient boosting machine, support vector machine, and random forest models. Performance evaluation metrics, including accuracy, recall, F۱-score, receiver operating characteristic, and area Under curve were employed to assess the models, revealing varying degrees of success across combining techniques and models. Notable achievements were observed for the random forest model coupled with the eddy current proximity transducers technique, underscoring the significance of informed technical selection and model optimization in enhancing vibration anomaly detection systems in combined cycle power plants. The results showed that the LDV technique has a significant increase in accuracy from about ۰.۴۹ to approximately ۰.۵۲, while the ECPT technique has improved from about ۰.۹ to close ۱.۰. These advances highlight the growing accuracy of the methods and enable the development of more efficient and reliable learning machines.

کلیدواژه ها:

نویسندگان

Al-Tekreeti Watban Khalid Fahmi

Department of Mechanical Engineering, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation

Kazem Reza Kashyzadeh

Department of Transport Equipment and Technology, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation

Siamak Ghorbani

Department of Mechanical Engineering, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. T. W. K. Fahmi, K. R. Kashyzadeh and S. ...
  • W. Fu and W. S. Hopkins, “Applying machine learning to ...
  • J. A. B. Villanueva, F. J. J. E. Aguilar, E. ...
  • M. N. Khan and I. Tlili, “New advancement of high ...
  • A. T. W. K. Fahmi, K. R. Kashyzadeh and S. ...
  • H. Lai and T. A. Adams II, “Life cycle analyses ...
  • G. N. D. S. Sudhakar and A. S. Sekhar, “Coupling ...
  • Y. Zhang, X. Wu, Y. Lei, J. Cao and W. ...
  • H. P. Bloch, Less costly turbo equipment uprates through optimized ...
  • J. K. Sinha, W. Hahn, K. Elbhbah, G. Tasker and ...
  • S. Edwards, A. W. Lees and M. I. Friswell, “The ...
  • F. F. Ehrich, “Self-excited vibration”, Shock and Vibration Handbook, ۵th ...
  • C. Wang, D. Zhang, Y. Ma, Z. Liang and J. ...
  • Y. J. Lee and Y. H. Ju, “An assessment of ...
  • J. Kapler, S. Campbell and M. Credland, “Continuous automated flux ...
  • W. Peng and L. Yingzheng, “Unsteady flow behavior of a ...
  • H. Wang, B. Ju, W. Li and Z. Feng, “Ultrastable ...
  • K. S. Wanga, D. Guo and P. S. Heyns, “The ...
  • S. Hanly, “Accelerometer specifications: deciphering an accelerometer’s datasheet” ...
  • Machine learning random forest algorithm - javatpoint. (n.d.) ...
  • F. Mevissen and M. Meo, “A review of NDT/structural health ...
  • Most common myths about accelerometers and frequency range adash. (n.d.) ...
  • J. Zhang, F. Duan, G. Niu, J. Jiang, and J. ...
  • M. Zielinski and G. Ziller, “Noncontact vibration measurements on compressor ...
  • M. Schewe and C. Rembe, “Signal diversity for laser-doppler vibrometers ...
  • L. V. Anand, D. Hepsiba, S. Palaniappan, B. Sumathy, P. ...
  • K. R. Kashyzadeh and S. Ghorbani, “New neural network-based algorithm ...
  • E. Maleki, O. Unal, S. S. M. Sahebari and K. ...
  • K. R. Kashyzadeh, N. Amiri, S. Ghorbani and K. Souri, ...
  • Laser doppler vibrometry: fundamentals-Polytec ...
  • Characteristics of a strain gauge sensor - Bestech Australia. Bestech ...
  • D. Vyroubal, “Eddy-current displacement transducer with extended linear range and ...
  • نمایش کامل مراجع