Smart maintenance strategies in combined cycle power plant
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 117
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCARME-14-1_003
تاریخ نمایه سازی: 28 آبان 1403
چکیده مقاله:
This research investigates the effectiveness of various vibration data acquisition techniques coupled with different machine learning models for detecting anomalies and classifying them. To this end, synthetic vibration data was generated for techniques such as eddy current proximity transducers (ECPT), accelerometer sensor, blade tip timing, laser doppler vibrometer (LDV), and strain gauge. Afterward, the data was pre-processed and used to train gradient boosting machine, support vector machine, and random forest models. Performance evaluation metrics, including accuracy, recall, F۱-score, receiver operating characteristic, and area Under curve were employed to assess the models, revealing varying degrees of success across combining techniques and models. Notable achievements were observed for the random forest model coupled with the eddy current proximity transducers technique, underscoring the significance of informed technical selection and model optimization in enhancing vibration anomaly detection systems in combined cycle power plants. The results showed that the LDV technique has a significant increase in accuracy from about ۰.۴۹ to approximately ۰.۵۲, while the ECPT technique has improved from about ۰.۹ to close ۱.۰. These advances highlight the growing accuracy of the methods and enable the development of more efficient and reliable learning machines.
کلیدواژه ها:
Anomaly detection ، Machine Learning ، Eddy current proximity transducers ، Blade tip timing ، Laser doppler vibrometer
نویسندگان
Al-Tekreeti Watban Khalid Fahmi
Department of Mechanical Engineering, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation
Kazem Reza Kashyzadeh
Department of Transport Equipment and Technology, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation
Siamak Ghorbani
Department of Mechanical Engineering, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :