A Comprehensive Review of Machine Learning Algorithms and Their Diverse Applications
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 53
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
HCICONF01_022
تاریخ نمایه سازی: 26 آبان 1403
چکیده مقاله:
This paper reviews diverse machine learning algorithms and their applications. It covers supervised learning, exploring Linear Regression, Decision Trees, and Support Vector Machines for tasks like regression and classification. Unsupervised learning is discussed, including K-Means and Hierarchical Clustering for clustering and anomaly detection. Reinforcement learning is outlined with algorithms like Q-Learning and Deep Q Networks in gaming and robotics. Deep learning is emphasized, addressing neural networks and convolutional neural networks in image and speech recognition. Ensemble methods like Random Forest and Gradient Boosting are examined. Industry-specific applications in healthcare, finance, and marketing are explored. The paper concludes with challenges, ethics, and future trends in machine learning.
کلیدواژه ها:
نویسندگان
F. Makvandi
Student of BEng, Computer Engineering Department, University of Aytaollah Borujerd, Borujerd, Iran
M Maleki
Faculty of Computer Eng, Computer Engineering Department, University of Aytaollah Borujerd, Borujerd, Iran