Enhancing Oncological Diagnosis by Single-Cell ATAC-seq Data for Internet of Medical Things

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 139

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-7-3_001

تاریخ نمایه سازی: 21 آبان 1403

چکیده مقاله:

Early cancer detection is crucial for improving patient survival rates, as timely intervention greatly enhances treatment efficacy. One promising method for early detection is identifying cancerous cells through the detection of protein-level modifications, which serve as early indicators of malignancy. These protein modifications often result from complex biochemical processes that occurs before visible cellular abnormalities, making them critical targets for diagnostic technologies. In recent years, wireless biomedical sensors have advanced significantly, enabling precisely detecting these protein-level changes. These sensors have the potential to detect cancer at its earliest stages by monitoring the subtle alterations in protein structures and functions that distinguish healthy cells from cancerous ones. As the costs of genetic analysis continue to decrease, the development of Medical Internet of Things (MIoT) devices has become increasingly feasible. These devices are designed to perform real-time analyses of biological specimens—such as blood and urine—by detecting protein-level changes indicative of cancer. In this paper, a new machine learning method based on Extreme Randomized Trees (ERT) is developed to increase the speed of classification of cancerous cells based on single-cell Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). The proposed method enhances the classification speed of the limited and noisy ATAC-seq data as it requires less computation to determine the best splits at each node of the decision trees. This method can significantly improve near real-time cancer risk assessment using samples collected by MIoT. Our proposed method achieves classification accuracy comparable to state of the art single-cell ATAC-seq data analysis techniques while reducing processing time by ۲۵۹%, challenged by various low-data scenarios. This approach presents an efficient solution for rapid cancer monitoring within the MIoT framework.

نویسندگان

Hossein Haririmonfared

Department of Computer Engineering, Khatam University, Tehran, Iran

naser elmi

Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran

Kaveh Kavousi

Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran

Babak Majidi

Department of Computer Engineering, Khatam University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. U. Ibrahim, F. Al-Turjman, Z. Sa’id, and M. Ozsoz, ...
  • D. F. Parks et al., "Internet of Things Architecture for ...
  • I. Ugandran et al., "A novel cryptosystem using DNA sequencing ...
  • J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. ...
  • D. A. Cusanovich et al., "Multiplex single cell profiling of ...
  • J. D. Buenrostro et al., "Single-cell chromatin accessibility reveals principles ...
  • C. A. Lareau et al., "Droplet-based combinatorial indexing for massive-scale ...
  • A. N. Schep, B. Wu, J. D. Buenrostro, and W. ...
  • C. G. de Boer and A. Regev, "BROCKMAN: deciphering variance ...
  • Z. Ji, W. Zhou, and H. Ji, "Single-cell regulome data ...
  • Zamanighomi et al., "Unsupervised clustering and epigenetic classification of single ...
  • D. A. Cusanovich et al., "A single-cell atlas of in ...
  • C. Bravo González-Blas et al., "cisTopic: cis-regulatory topic modeling on ...
  • H. A. Pliner et al., "Cicero predicts cis-regulatory DNA interactions ...
  • J. R. Sinnamon et al., "The accessible chromatin landscape of ...
  • S. M. Baker, C. Rogerson, A. Hayes, A. D. Sharrocks, ...
  • R. Fang et al., "Comprehensive analysis of single cell ATAC-seq ...
  • H. Haririmonfared, N. Elmi, K. Kavousi, and B. Majidi, "Improving ...
  • L. Xiong et al., "SCALE method for single-cell ATAC-seq analysis ...
  • Y. Cao et al., "SAILER: scalable and accurate invariant representation ...
  • W. Tan and Y. Shen, "Multimodal learning of noncoding variant ...
  • T. Jing, "Unsupervised Deep Topology Embedded Characterization of Single-Cell Chromatin ...
  • P. Ding, Y. Wang, X. Zhang, X. Gao, G. Liu, ...
  • A. Ramakrishnan, G. Wangensteen, S. Kim, E. J. Nestler, and ...
  • W. Ma, J. Lu, and H. Wu, "Cellcano: supervised cell ...
  • M. J. Regner et al., "Defining the Regulatory Logic of ...
  • C. Chen et al., "Application of ATAC-seq in tumor-specific T ...
  • Y.-H. Cheng et al., "Hydro-Seq enables contamination-free high-throughput single-cell RNA-sequencing ...
  • R. C. Zieren, P. J. Zondervan, K. J. Pienta, A. ...
  • F. Shi et al., "A Microfluidic Chip for Efficient Circulating ...
  • W. Xu et al., "A plate-based single-cell ATAC-seq workflow for ...
  • M. R. Corces et al., "Lineage-specific and single-cell chromatin accessibility ...
  • J. D. Buenrostro et al., "Integrated single-cell analysis maps the ...
  • ۵k Peripheral blood mononuclear cells (PBMCs) from a healthy donor ...
  • ۵k Peripheral blood mononuclear cells (PBMCs) from a healthy donor ...
  • H. Guo, Z. Yang, T. Jiang, S. Liu, Y. Wang, ...
  • P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," ...
  • نمایش کامل مراجع