Analysis of Traffic Safety Factors and Their Impact Using Machine Learning Algorithms
محل انتشار: ژورنال مهندسی عمران، دوره: 10، شماره: 9
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 113
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEJ-10-9_006
تاریخ نمایه سازی: 18 آبان 1403
چکیده مقاله:
The safety of road traffic is facing increasing challenges from a range of factors, and this study aims to address this issue. The paper describes the development of a model that assesses both the quantitative and qualitative aspects of the current traffic situation and can also predict future trends based on monthly data on traffic accidents over a period of years. The dataset is composed of the number of accidents that occurred in the Pristina region over a ۱۰-year period, and these are categorized based on the type of accident and safety factors, including human, vehicle, and road factors. By using machine learning algorithms, a model has been developed that determines the factor with the greatest impact on traffic safety. To create the model, the algorithms Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Random Trees (RT) were used. The model evaluates the contribution of human, road, and vehicle factors to traffic accidents, using machine learning algorithms and ۳۶ types of traffic accidents to analyze the relevant statistics. The results indicate a very good fit of the model according to the MLR algorithm, and this model also identifies the road factor as the main influencer of the traffic safety level. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۴-۰۱۰-۰۹-۰۶ Full Text: PDF
کلیدواژه ها:
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :