برآورد سطح زیر کشت برنج در استان گیلان با استفاده از فناوری سنجش از دور و سامانه GEE
محل انتشار: نشریه پژوهش های خاک، دوره: 38، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 199
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AREO-38-2_001
تاریخ نمایه سازی: 13 آبان 1403
چکیده مقاله:
کمبود آب، افزایش هزینه های تولید، تغییر کاربری اراضی و افزایش تقاضا برای غذا سبب شده تا پایش دقیق مکانی و زمانی سطح زیر کشت برنج به عنوان یک محصول استراتژیک، برای برنامه ریزان و تصمیم گیران دارای اهمیت فوق العاده ای باشد. روش های میدانی برآورد سطح زیر کشت محصولات در سطوح وسیع، هزینه بر و زمان بر است اما فناوری سنجش از دور داده های لازم را با سرعت زیاد و هزینه اندک در اختیار مدیران قرار میدهد. هدف از این پژوهش، استفاده از تصاویر سنجش از دور در برآورد سطح زیر کشت برنج در استان گیلان با بکارگیری بهترین روش طبقه بندی نظارت شده است. از این رو تصاویر ماهواره سنتینل ۲ با استفاده از ۶ روش طبقه بندی نظارت شده شامل روش های ML، CART، RF، SVM، GME و RF-NDVI تحلیل شد. روش ML در محیط ENVI و بقیه روش ها با محاسبات در فضای ابری محیط GEE انجام شد. نتایج استفاده از روش های طبقه بندی نشان داد که روش جنگل تصادفی به همراه شاخص گیاهی NDVI (RF-NDVI) با ضریب کاپای ۰/۹۴ و صحت کل ۰/۹۰ مقایسه با سایر روش ها بالاترین دقت را دارد که نشان دهنده تاثیر شاخص گیاهی در برقراری تمایز بین سطح زیر کشت برنج و دیگر کاربری ها است. برآورد سطح زیر کشت برنج استان با این روش نشان داد که سطح خالص کل زمین های شالیزاری استان گیلان ۲۱۸۱۳۵ هکتار است که در مقایسه با آمار موجود سازمان جهاد کشاورزی (۲۳۸۰۱۲ هکتار) و شرکت آب منطقه ای استان گیلان (۲۴۵۰۰۰ هکتار) به ترتیب ۸/۳۵%و ۱۰/۹۶%برآورد کمتری است.
کلیدواژه ها:
نویسندگان
مجتبی رضایی
موسسه تحقیقات برنج کشور . سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت ، ایران
ابراهیم امیری
استاد گروه مهندسی آب، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
مرتضی کمالی
موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :