A space-time least-squares support vector regression scheme for inverse source problem of the time-fractional wave equation
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 90
فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-14-31_003
تاریخ نمایه سازی: 13 آبان 1403
چکیده مقاله:
The inverse problems in various fields of applied sciences and industrial design are concerned with the estimation of parameters that cannot be directly measured. In this work, we present a novel numerical approach for addressing the fractional inverse source problem by a machine learning algorithm and considering the ideas behind the spectral methods. The introduced algorithm utilizes a space-time Galerkin type of least-squares support vector regression (LS-SVR) to approximate the unknown source in a finite-dimensional space, providing a stable and efficient solution. With the proposed machine learning method, we overcome the limitations of classical numerical methods and offer a promising alternative for tackling inverse source problems while avoiding overfitting by carefully selecting regularization parameters. To validate the effectiveness of our approach and illustrate an exponential convergence, we present some test problems along with the corresponding numerical results. The proposed method's superior accuracy compared to the existing methods is also illustrated.
کلیدواژه ها:
Machine learning ، Support Vector Machines ، Inverse source problem ، Time fractional wave equation ، Space-time Galerkin
نویسندگان
Abumoslem Mohammadi
Department of Mathematics, Shahed University, Tehran, Iran.
Abolfazl Tari Marzabad
Department of Mathematics, Shahed University, Tehran, Iran.