DeepSiPPI: Enhancing Protein-Protein Interaction Prediction through Siamese Neural Networks and Sequence-to-Image Transformation

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 99

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IBIS12_195

تاریخ نمایه سازی: 12 آبان 1403

چکیده مقاله:

This study focuses on the analysis and prediction of Protein-Protein Interactions (PPI) withinbiological systems. We propose an innovative methodology employing a Siamese Neural Networkarchitecture with a Convolutional Neural Network (CNN) as its underlying framework. Notably, weintroduce a novel preprocessing step involving the conversion of protein sequences into images throughthe application of a robust statistical method. Subsequently, these transformed representations areutilized as input data for the Siamese Neural Network, a choice motivated by its intrinsic capacity foreffective feature extraction. The discerning ability of the Siamese Neural Network proves instrumentalin discerning subtle patterns and features crucial for the identification of protein interactions. Thepresented approach not only showcases its utility in refining interaction predictions but also underscoresthe potential for advancing the comprehension of intricate protein networks, thereby contributing to thebroader landscape of bioinformatics research .

نویسندگان

Ali Karimi

Department of Computer Science,University of Science and Technology of Mazandaran, Behshahr, Iran

Jamshid Pirgazi

Department of Computer Science,University of Science and Technology of Mazandaran, Behshahr, Iran