Quantitative EEG Features to Diagnose Anxiety Disorders

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 70

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IBIS12_145

تاریخ نمایه سازی: 12 آبان 1403

چکیده مقاله:

According to World Health Organization (WHO) report in ۲۰۱۹, ۱ of ۸ people live with amental disorder. Anxiety disorders are the most common type of mental disorders. Anxiety disordersinclude disorders that share features of excessive fear and anxiety and related behavioral disturbances.Diagnosis of anxiety disorder is the first and the most important step towards its treatment.While the clinical method is yet the most reliable method of diagnosis, use of biological signals, suchas Electrocardiogram, electroencephalogram, etc. has attracted researchers’ attention.In this paper, we study the EEG signals and the information they convey to find a new way to diagnoseanxiety disorders. For this purpose, we have selected different EEG features and perform ۵ differentclassification methods on them. It is shown that EEG features can be a bio-marker of anxiety disorders.Obtained results show that functional connectivity (FC) feature sets achieved better results withRandom Forest.

نویسندگان

M Ansari

Department of Computer Science and Engineering & IT, Shiraz University, Shiraz, Iran

H Tahayori

Department of Computer Science and Engineering & IT, Shiraz University, Shiraz, Iran