Enhancing Heart Failure Prediction Accuracy through Effective Preprocessing andPrincipal Component Analysis
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 22
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS12_003
تاریخ نمایه سازی: 12 آبان 1403
چکیده مقاله:
Accurate prediction of heart failure is crucial for early intervention and preventative care.This study aims to improve prediction accuracy using a Heart Failure Prediction dataset of ۲۹۹ sampleswith ۱۲ distinct features and a target variable. We addressed data imbalance using the NearMissalgorithm and normalized the data to ensure uniformity. Subsequently, Principal Component Analysis(PCA) was used to distill the dataset to ۷ principal features, which, when aggregate with the originalfeatures, formed a restructured dataset. Several machine learning models were evaluated, and therandom forest algorithm emerged as the most accurate, achieving an ۸۳.۵% prediction success rate. Thisoutcome not only represents a significant improvement over previous studies [۱] but also highlights theimportance of meticulous preprocessing and feature optimization in predictive modeling.
کلیدواژه ها:
نویسندگان
A Dibaji
Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
S Sulaimany
Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran