Enhancing Heart Failure Prediction Accuracy through Effective Preprocessing andPrincipal Component Analysis

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 22

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IBIS12_003

تاریخ نمایه سازی: 12 آبان 1403

چکیده مقاله:

Accurate prediction of heart failure is crucial for early intervention and preventative care.This study aims to improve prediction accuracy using a Heart Failure Prediction dataset of ۲۹۹ sampleswith ۱۲ distinct features and a target variable. We addressed data imbalance using the NearMissalgorithm and normalized the data to ensure uniformity. Subsequently, Principal Component Analysis(PCA) was used to distill the dataset to ۷ principal features, which, when aggregate with the originalfeatures, formed a restructured dataset. Several machine learning models were evaluated, and therandom forest algorithm emerged as the most accurate, achieving an ۸۳.۵% prediction success rate. Thisoutcome not only represents a significant improvement over previous studies [۱] but also highlights theimportance of meticulous preprocessing and feature optimization in predictive modeling.

نویسندگان

A Dibaji

Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran

S Sulaimany

Social & Biological Network Laboratory (SBNA), Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran