PREDICTION OF DETERIORATION COMPONENTS OFSTEEL BEAMS USING MACHINE LEARNING METHODS
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 103
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SEE09_020
تاریخ نمایه سازی: 10 آبان 1403
چکیده مقاله:
The evaluation of the collapse of structural systems under seismic loading necessitates theidentification and quantification of deterioration components (DCs). In the case of Steel W-sectionbeams (SWSB), three distinct types of DCs have been derived. These deterioration components forsteel beams comprise the following: Pre-capping plastic rotation (Ɵp), post-capping plastic rotation(Ɵpc), and cumulative rotation capacity (Λ). The primary objective of this research is to employ amachine learning (ML) model for the accurate determination of deterioration components. AdaBoostand XGBoost algorithms have been used to predict deterioration components. The XGBoost has highperformance and accuracy. The evaluation metrics of the XGBoost model are as follows: R۲=۰.۸۹ andRMSE=۰.۰۰۴۶ for Ɵp, R۲=۰.۹, and RMSE=۰.۰۲۴ for Ɵpc and R۲=۰.۸۹ and RMSE=۰.۲۰۸ for Λ.
کلیدواژه ها:
نویسندگان
Azadeh Khoshkroodi
Ph.D. Candidate of Structural Engineering, Department of Engineering, Zanjan Branch, Islamic azaduniversity, Zanjan ,Iran,
Hossein Parvini Sani
Assistant Professor, Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan ,Iran,
Mojtaba Aajami
Assistant Professor, Department of Computer Engineering, Zanjan Branch, Islamic Azad University, Zanjan,Iran,