EmoRecBiGRU: Emotion Recognition in Persian Tweets with a Transformer-based Model, Enhanced by Bidirectional GRU
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 193
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ITRC-16-3_005
تاریخ نمایه سازی: 4 آبان 1403
چکیده مقاله:
Emotion recognition in text is a fundamental aspect of natural language understanding, with significant applications in various domains such as mental health monitoring, customer feedback analysis, content recommendation systems, and chatbots. In this paper, we present a hybrid model for predicting the presence of six emotions: anger, disgust, fear, sadness, happiness, and surprise in Persian text. We also predict the primary emotion in the given text, including these six emotions and the “other” category. Our approach involves the utilization of XLM-RoBERTa, a pre-trained transformer-based language model, and fine-tuning it on two diverse datasets: EmoPars and ArmanEmo. Central to our approach is incorporating a single Bidirectional Gated Recurrent Unit (BiGRU), placed before the final fully connected layer. This strategic integration empowers our model to capture contextual dependencies more effectively, resulting in an improved F-score after adding this BiGRU layer. This enhanced model achieved a ۲% improvement in the F-score metric on the ArmanEmo test set and a ۷% improvement in the F-score metric for predicting the presence of six emotions on the final test set of the ParsiAzma Emotion Recognition competition.
کلیدواژه ها:
Emotion Recognition (ER) ، Bidirectional Gated Recurrent Unit (BiGRU) ، Natural Language Processing (NLP) ، Large Language Model (LLM)
نویسندگان
Faezeh Sarlakifar
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
Morteza Mahdavi Mortazavi
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
Mehrnoush Shamsfard
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran