EmoRecBiGRU: Emotion Recognition in Persian Tweets with a Transformer-based Model, Enhanced by Bidirectional GRU

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 193

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ITRC-16-3_005

تاریخ نمایه سازی: 4 آبان 1403

چکیده مقاله:

Emotion recognition in text is a fundamental aspect of natural language understanding, with significant applications in various domains such as mental health monitoring, customer feedback analysis, content recommendation systems, and chatbots. In this paper, we present a hybrid model for predicting the presence of six emotions: anger, disgust, fear, sadness, happiness, and surprise in Persian text. We also predict the primary emotion in the given text, including these six emotions and the “other” category. Our approach involves the utilization of XLM-RoBERTa, a pre-trained transformer-based language model, and fine-tuning it on two diverse datasets: EmoPars and ArmanEmo. Central to our approach is incorporating a single Bidirectional Gated Recurrent Unit (BiGRU), placed before the final fully connected layer. This strategic integration empowers our model to capture contextual dependencies more effectively, resulting in an improved F-score after adding this BiGRU layer. This enhanced model achieved a ۲% improvement in the F-score metric on the ArmanEmo test set and a ۷% improvement in the F-score metric for predicting the presence of six emotions on the final test set of the ParsiAzma Emotion Recognition competition.

کلیدواژه ها:

Emotion Recognition (ER) ، Bidirectional Gated Recurrent Unit (BiGRU) ، Natural Language Processing (NLP) ، Large Language Model (LLM)

نویسندگان

Faezeh Sarlakifar

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

Morteza Mahdavi Mortazavi

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

Mehrnoush Shamsfard

Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran