An Intelligent Blockchain-Based System Configuration for Screening, Monitoring, and Tracing of Pandemics

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 117

فایل این مقاله در 30 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-2_002

تاریخ نمایه سازی: 1 آبان 1403

چکیده مقاله:

This study proposes a high-level design and configuration for an intelligent dual (hybrid and private) blockchain-based system. The configuration includes the type of network, level of decentralization, nodes, and roles, block structure information, authority control, and smart contracts and intended to address the two main categories of challenges–operation management and data management–through three intelligent modules across the pandemic stages. In the pre-hospital stage, an intelligent infection prediction system is proposed that utilizes in-house data to address the lack of a simple, efficient, agile, and low-cost screening method for identifying potentially infected individuals promptly and preventing the overload of patients entering hospitals. In the in-hospital stage, an intelligent prediction system is proposed to predict infection severity and hospital Length of Stay (LoS) to identify high-risk patients, prioritize them for receiving care services, and facilitate better resource allocation. In the post-hospital stage, an intelligent prediction system is proposed to predict the reinfection and readmission rates, to help reduce the burden on the healthcare system and provide personalized care and follow-up for higher-risk patients. In addition, the distribution of limited Personal protective equipment (PPE) is made fair using private blockchain (BC) and smart contracts. These modules were developed using Python and utilized to evaluate the performance of state-of-the-art machine learning (ML) techniques through ۱۰-fold cross-validation at each stage. The most critical features were plotted and analyzed using SHapely Adaptive exPlanations (SHAP). Finally, we explored the implications of our system for both research and practice and provided recommendations for future enhancements.

نویسندگان

Ali Shabrandi

Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.

Ali Rajabzadeh Ghatari

Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University.

Mohammad Dehghan nayeri

Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University.

Nader Tavakoli

Department of Emergency Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences.

Sahar Mirzaei

Iran University of Medical Sciences, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ammirato, S., R. Linzalone, and A.M. Felicetti, Knowledge management in ...
  • Cavallo, A. and V. Ireland, Prepared for the Global Assessment ...
  • Adiga, A., et al., Data-Driven Modeling for Different Stages of ...
  • WHO. WHO Director-General's opening remarks at the media briefing on ...
  • Zhai, Y., et al. From isolation to coordination: how can ...
  • Looi, M.-K., Covid-۱۹: Is a second wave hitting Europe? bmj, ...
  • Abebe, E.C., et al., The newly emerged COVID-۱۹ disease: a ...
  • Muhammad, G. and M.S. Hossain, COVID-۱۹ and non-COVID-۱۹ classification using ...
  • Dos Santos, L.A., et al., Recurrent COVID-۱۹ including evidence of ...
  • Li, Y., et al., Stability issues of RT‐PCR testing of ...
  • Wang, S., et al., A fully automatic deep learning system ...
  • Banerjee, A., et al., Use of machine learning and artificial ...
  • Arpaci, I., et al., Predicting the COVID-۱۹ infection with fourteen ...
  • Grannec, F., et al., Pre-Hospital Management of Patients with COVID-۱۹ ...
  • Son, K.-B., T.-j. Lee, and S.-s. Hwang, Disease severity classification ...
  • Breathnach, A.S., et al., Prior COVID-۱۹ significantly reduces the risk ...
  • Gupta, V., et al., A symptomatic Reinfection in ۲ Healthcare ...
  • Nagesh, S. and S. Chakraborty, Saving the frontline health workforce ...
  • Zhu, P., et al., Enhancing Traceability of Infectious Diseases: A ...
  • Pandey, P. and R. Litoriya, Securing and authenticating healthcare records ...
  • Ismail, L., H. Materwala, and S. Zeadally, Lightweight blockchain for ...
  • Lau, H., et al., Internationally lost COVID-۱۹ cases. Journal of ...
  • Gao, F., et al., Management and Data Sharing of COVID-۱۹ ...
  • Rasheed, J., et al., COVID-۱۹ in the Age of Artificial ...
  • WHO. Coronavirus Disease ۲۰۱۹ (COVID-۱۹): Situation report—۳۰. ۲۰۲۰ ...
  • Coppola, L., et al., Biobanking in health care: evolution and ...
  • Yaqoob, I., et al., Blockchain for healthcare data management: opportunities, ...
  • Spreeuwenberg, P., M. Kroneman, and J. Paget, Reassessing the global ...
  • Al-Emran, M., Hierarchical reinforcement learning: a survey. International journal of ...
  • Arpaci, I., et al., Analysis of twitter data using evolutionary ...
  • Mhamdi, C., M. Al-Emran, and S.A. Salloum, Text mining and ...
  • Zaza, S. and M. Al-Emran. Mining and exploration of credit ...
  • Bian, J. and F. Modave, The rapid growth of intelligent ...
  • Nguyen, T. T., Nguyen, Q. V. H., Nguyen, D. T., ...
  • Shabrandi, A., et al., Fast COVID-۱۹ Infection Prediction with In-House ...
  • Aslan, M.F., et al., CNN-based transfer learning–BiLSTM network: A novel ...
  • Wang, B., et al., AI-assisted CT imaging analysis for COVID-۱۹ ...
  • Chandra, T.B., et al., Coronavirus disease (COVID-۱۹) detection in Chest ...
  • Lassau, N., et al., Integrating deep learning CT-scan model, biological ...
  • Afrash, M.R., et al., Predicting hospital readmission risk in patients ...
  • Long, J.B. and J.M. Ehrenfeld, The role of augmented intelligence ...
  • Gozes, O., et al., Rapid ai development cycle for the ...
  • Jin, C., et al., Development and evaluation of an artificial ...
  • Punn, N.S. and S. Agarwal, Automated diagnosis of COVID-۱۹ with ...
  • Song, Y., et al., Deep learning enables accurate diagnosis of ...
  • Wang, S., et al., A deep learning algorithm using CT ...
  • Tostmann, A., et al., Strong associations and moderate predictive value ...
  • Punn, N.S., S.K. Sonbhadra, and S. Agarwal, COVID-۱۹ epidemic analysis ...
  • Feng, C., et al., A novel triage tool of artificial ...
  • Mei, X., et al., Artificial intelligence–enabled rapid diagnosis of patients ...
  • Shaverdian, N., et al., Need for caution in the diagnosis ...
  • Guhathakurata, S., et al., A novel approach to predict COVID-۱۹ ...
  • Guhathakurata, S., et al., A new approach to predict COVID-۱۹ ...
  • Malik, M., et al., Determination of COVID-۱۹ Patients Using Machine ...
  • Buttia, C., et al., Prognostic models in COVID-۱۹ infection that ...
  • Liu, L., et al., Predicting COVID-۱۹ Severity: Challenges in Reproducibility ...
  • Mahboub, B., et al., Prediction of COVID-۱۹ hospital length of ...
  • Ebinger, J., et al., A machine learning algorithm predicts duration ...
  • Alabbad, D.A., et al., Machine learning model for predicting the ...
  • Afrash, M., et al., Predictive modeling of hospital length of ...
  • Jutzeler, C.R., et al., Comorbidities, clinical signs and symptoms, laboratory ...
  • Saadatmand, S., et al., Using machine learning in prediction of ...
  • Amiri, P., et al., Prediction of mortality risk and duration ...
  • Alafif, T., et al., Machine and Deep Learning towards COVID-۱۹ ...
  • Nayak, J., et al., Intelligent system for COVID-۱۹ prognosis: a ...
  • Syeda, H.B., et al., Role of machine learning techniques to ...
  • Lalmuanawma, S., J. Hussain, and L. Chhakchhuak, Applications of machine ...
  • Tayarani-N, M.-H., Applications of artificial intelligence in battling against Covid-۱۹: ...
  • El-Bouzaidi, Y.E.I. and O. Abdoun, Advances in Artificial Intelligence for ...
  • Burnazovic, E., et al., Application of Artificial intelligence in COVID-۱۹-related ...
  • Khan, M., et al., Applications of artificial intelligence in COVID-۱۹ ...
  • Comito, C. and C. Pizzuti, Artificial intelligence for forecasting and ...
  • Tayarani N, M.-H., Applications of artificial intelligence in battling against ...
  • Yi, J., et al., Review on the COVID-۱۹ pandemic prevention ...
  • Nakamoto, S., Bitcoin: A peer-to-peer electronic cash system. Decentralized business ...
  • Sullivan, C. and E. Burger, E-residency and blockchain. Computer Law ...
  • Yüksel, B., A. Küpçü, and Ö. Özkasap, Research issues for ...
  • Kshetri, N., Blockchain's roles in strengthening cybersecurity and protecting privacy. ...
  • Beninger, P. and M.A. Ibara, Pharmacovigilance and Biomedical Informatics: A ...
  • Au, M.H., et al., A general framework for secure sharing ...
  • Wang, S., et al., Blockchain-powered parallel healthcare systems based on ...
  • Andrew, J., et al., Blockchain for healthcare systems: Architecture, security ...
  • IBM. How the FDA is piloting blockchain for the pharmaceutical ...
  • N., A. Blockchain in healthcare: use cases for your practice. ...
  • Yong, B., et al., An intelligent blockchain-based system for safe ...
  • Hussien, H.M., et al., Blockchain technology in the healthcare industry: ...
  • He, W., Z.J. Zhang, and W. Li, Information technology solutions, ...
  • Stafford, T.F. and H. Treiblmaier, Characteristics of a Blockchain Ecosystem ...
  • Zhang, A. and X. Lin, Towards Secure and Privacy-Preserving Data ...
  • Islam, A., et al., A Blockchain-Based Artificial Intelligence-Empowered Contagious Pandemic ...
  • Kumar, A., et al., A drone-based networked system and methods ...
  • Gupta, R., et al., Blockchain-envisioned softwarized multi-swarming UAVs to tackle ...
  • Karaarslan, E. and D. Aydın, ۲ - An artificial intelligence–based ...
  • Wadud, M.A.H., et al. A Patient Centric Agent Assisted Private ...
  • Saha, R., et al., Internet of Things Framework for Oxygen ...
  • Shrimali, B. and H.B. Patel, Blockchain state-of-the-art: architecture, use cases, ...
  • Xie, M., et al., A survey on blockchain consensus mechanism: ...
  • Shrier, D., W. Wu, and A. Pentland, Blockchain & infrastructure ...
  • Mitani, T. and A. Otsuka, Traceability in permissioned blockchain. IEEE ...
  • Almeshal, T.A. and A.A. Alhogail, Blockchain for businesses: a scoping ...
  • Xu, X., et al. The blockchain as a software connector. ...
  • Lo, S.K., et al. Evaluating suitability of applying blockchain. in ...
  • Schneider, B. and W. Azan. Perceptions and Misconceptions of Blockchain: ...
  • Betzwieser, B., Franzbonenkamp, S., Riasanow, T., Böhm, M., Kienegger, H., ...
  • Simaremare, A., et al. Suitability study of Blockchain application in ...
  • Masood, F., & Faridi, A. R. A multi-criteria decision-making approach ...
  • Spencer-Hicken, S., C. Schutte, and P. Vlok, Blockchain feasibility assessment: ...
  • Peck, M.E., Blockchain world-Do you need a blockchain? This chart ...
  • Wüst, K. and A. Gervais. Do you need a blockchain? ...
  • Emmadi, N., et al. Practical deployability of permissioned blockchains. in ...
  • Hunhevicz, J.J. and D.M. Hall, Do you need a blockchain ...
  • Pedersen, A.B., M. Risius, and R. Beck, A ten-step decision ...
  • Hassija, V., et al., Framework for determining the suitability of ...
  • El Madhoun, N., J. Hatin, and E. Bertin. Going beyond ...
  • Koens, T. and E. Poll. What blockchain alternative do you ...
  • Loo, W.K., et al., Systematic review on COVID-۱۹ readmission and ...
  • Basile, D., et al., Digitalizing circular economy through Blockchains: The ...
  • XDC. XDC Network. ۲۰۲۳ [cited ۲۰۲۳ ۱۱/۲۴/۲۰۲۳]; Available from: https://xdc.org/ ...
  • Kushwaha, S.S., et al., Ethereum smart contract analysis tools: A ...
  • Grishchenko, I., M. Maffei, and C. Schneidewind. A semantic framework ...
  • Christidis, K. and M. Devetsikiotis, Blockchains and smart contracts for ...
  • Burki, T., Global shortage of personal protective equipment. The Lancet ...
  • Wirth, R. and J. Hipp. CRISP-DM: Towards a standard process ...
  • Wen, Y., et al., Time-to-event modeling for hospital length of ...
  • Alansari, S.A., et al., Efficient and privacy-preserving infection control system ...
  • Ahmed, I., A. Chehri, and G. Jeon, Artificial Intelligence and ...
  • Ahmad, R.W., et al., Blockchain and COVID-۱۹ pandemic: Applications and ...
  • Caceres, M.M.F., et al., The impact of misinformation on the ...
  • Ceci, Flavio Maria, Marco Fiore, Francesca Gavaruzzi, Antonio Angeloni, Marco ...
  • Piri, Seyed Mohammad, Maryam Edalatfar, Sina Shool, Mohammad Naser Jalalian, ...
  • Dhillon, Rubaid Azhar, Mohammad Aadil Qamar, Jaleed Ahmed Gilani, Omar ...
  • نمایش کامل مراجع