A Deep Learning-based Model for Fingerprint Verification
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 141
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-2_006
تاریخ نمایه سازی: 1 آبان 1403
چکیده مقاله:
Fingerprint verification has emerged as a cornerstone of personal identity authentication. This research introduces a deep learning-based framework for enhancing the accuracy of this critical process. By integrating a pre-trained Inception model with a custom-designed architecture, we propose a model that effectively extracts discriminative features from fingerprint images. To this end, the input fingerprint image is aligned to a base fingerprint through minutiae vector comparison. The aligned input fingerprint is then subtracted from the base fingerprint to generate a residual image. This residual image, along with the aligned input fingerprint and the base fingerprint, constitutes the three input channels for a pre-trained Inception model. Our main contribution lies in the alignment of fingerprint minutiae, followed by the construction of a color fingerprint representation. Moreover, we collected a dataset, including ۲۰۰ fingerprint images corresponding to ۲۰ persons, for fingerprint verification. The proposed method is evaluated on two distinct datasets, demonstrating its superiority over existing state-of-the-art techniques. With a verification accuracy of ۹۹.۴۰% on the public Hong Kong Dataset, our approach establishes a new benchmark in fingerprint verification. This research holds the potential for applications in various domains, including law enforcement, border control, and secure access systems.
کلیدواژه ها:
نویسندگان
Mobina Talebian
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
Kourosh Kiani
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
Razieh Rastgoo
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :