Exploring Object Detection Methods for Autonomous Vehicles Perception: A Comparative Study of Classical and Deep Learning Approaches

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 161

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-2_007

تاریخ نمایه سازی: 1 آبان 1403

چکیده مقاله:

This paper explores the performance of various object detection techniques for autonomous vehicle perception by analyzing classical machine learning and recent deep learning models. We evaluate three classical methods, including PCA, HOG, and HOG alongside different versions of the SVM classifier, and five deep-learning models, including Faster-RCNN, SSD, YOLOv۳, YOLOv۵, and YOLOv۹ models using the benchmark INRIA dataset. The experimental results show that although classical methods such as HOG + Gaussian SVM outperform other classical approaches, they are outperformed by deep learning techniques. Furthermore, Classical methods have limitations in detecting partially occluded, distant objects and complex clothing challenges, while recent deep-learning models are more efficient and provide better performance (YOLOv۹) on these challenges.

کلیدواژه ها:

نویسندگان

Zobeir Raisi

Electrical Engineering Department, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran.

Valimohammad Nazarzehi

Electrical Engineering Department, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran.

Rasoul Damani

Electrical Engineering Department, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran.

Esmaeil Sarani

Electrical Engineering Department, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • T. Barbu, “Pedestrian detection and tracking using temporal differencing and ...
  • A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv۴: Optimal ...
  • N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, ...
  • X. Chen, H. Ma, J. Wan, B. Li, and T. ...
  • Z. Chen, K. Chen, and J. Chen, “Vehicle and pedestrian ...
  • C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, Vol. ...
  • N. Dalal and B. Triggs, “Histograms of oriented gradients for ...
  • P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian ...
  • M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey ...
  • A. Ess, B. Leibe, and L. Van Gool, “Depth and ...
  • M. Everingham, L. Van Gool, C. K. I. Williams, J. ...
  • R. Girshick, “Fast R-CNN,” in ۲۰۱۵ IEEE International Conference on ...
  • R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich ...
  • K. He, X. Zhang, S. Ren, and J. Sun, “Spatial ...
  • G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and ...
  • S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network ...
  • C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and ...
  • R. Kaur and S. Singh, “A comprehensive review of object ...
  • T. Kobayashi, A. Hidaka, and T. Kurita, “Selection of histograms ...
  • K. Lei and Y. Luo, “A new pedestrian detection method ...
  • C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, ...
  • J. Li, X. Liang, S. Shen, T. Xu, J. Feng, ...
  • T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, ...
  • T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, ...
  • T. Lindeberg, “Scale-invariant feature transform,” ۲۰۱۲. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva۲:۴۸۰۳۲۱ ...
  • W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, ...
  • A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection ...
  • A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in ...
  • C. P. Papageorgiou, M. Oren, and T. Poggio, “A general ...
  • J. Redmon and A. Farhadi, “YOLO۹۰۰۰: Better, faster, stronger,” in ...
  • J. Redmon and A. Farhadi, “YOLOv۳: An incremental improvement,” arXiv ...
  • J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You ...
  • S. Ren, K. He, R. Girshick, and J. Sun, “Faster ...
  • E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: ...
  • P. Scovanner, S. Ali, and M. Shah, “A ۳-dimensional SIFT ...
  • C. Shorten and T. M. Khoshgoftaar, “A survey on image ...
  • F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi, “Pedestrian ...
  • F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi, “Pedestrian ...
  • P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using ...
  • P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using ...
  • J. Reis, D. Dillon, J. Kupec, J. Hong, and A. ...
  • C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You only ...
  • C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “YOLOv۹: Learning ...
  • T. Watanabe, S. Ito, and K. Yokoi, “Cooccurrence histograms of ...
  • G. Xu, X. Wu, L. Liu, and Z. Wu, “Real-time ...
  • Y. Yamauchi, H. Fujiyoshi, B.-W. Hwang, and T. Kanade, “People ...
  • S. Yao, S. Pan, T. Wang, C. Zheng, W. Shen, ...
  • W.-L. Zhao and C.-W. Ngo, “Flip-invariant SIFT for copy and ...
  • Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object ...
  • C. Zhou and J. Yuan, “Multi-label learning of part detectors ...
  • Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast ...
  • X. Zhu, W. Su, L. Lu, B. Li, X. Wang, ...
  • M.-W. Li, R.-Z. Xu, Z.-Y. Yang, W.-C. Hong, X. An, ...
  • S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A ...
  • V. Bharilya and N. Kumar, “Machine learning for autonomous vehicle's ...
  • S. M. Ghazali and Y. Baleghi, “Pedestrian detection in infrared ...
  • M. Nasehi, M. Ashourian, and H. Emami, “Vehicle type, color ...
  • نمایش کامل مراجع