ارائه یک مدل یادگیری فازی جدید مبتنی بر معیار فراموشی
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 121
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSCIT-11-2_005
تاریخ نمایه سازی: 25 مهر 1403
چکیده مقاله:
مشاهدات بیولوژیکی بیان می دارد که فراموشی، جزء جداناپذیر از سیستم یادگیری انسان است. بنابراین فراموشی در الگوریتم های یادگیری لزوما مخرب نبوده و می تواند سازنده نیز باشد. در پیاده سازی ها، به دلیل محدودیت فضا و تعداد نورون های شبکه، تعداد محدودی الگوی آموزشی قابل آموزش بوده و الگوهای بعدی با این الگوها تداخل مخرب پیدا خواهند کرد؛ درنتیجه، الگوریتم ها، برای یادگیری درازمدت، باید نوعی مکانیزم فراموشی داشته باشند تا فضای یادگیری (ذخیره سازی) برای الگوهای آموزشی جدید ایجاد گردد. بنابراین، برای موفقیت در حوزه یادگیری ماشین، نیازمند نوعی مکانیزم فراموشی مشابه عملکرد مغز انسان هستیم. فراموشی به صورت از دست رفتن اطلاعات از حافظه ها مدل می شود و لزوم وجود این مکانیزم، در آموزش آنلاین محسوس تر است چراکه شبکه باید دائما وزن های خود را بروز کند. در این مقاله از روش یادگیری فعال که یکی از روش های پرکاربرد می باشد، بهره گرفته شده است. این روش بر مبنای پخش قطرات جوهر به ازای داده های آموزشی به مدل سازی سیستم می پردازد. در این روش، دامنه قطرات جوهر بر روی صفحات بدون تغییر مانده و هیچ گونه فراموشی صورت نمی پذیرد که مغایر با مشاهدات بیولوژیک است. در این مقاله مکانیزیم فراموشی به این الگوریتم اضافه شده و شبیه سازی ها نشان از افزایش قدرت محاسباتی مدل پیشنهادی در برخورد با مجموعه داده های متفاوت دارد.
کلیدواژه ها:
Active Learning Method (ALM) ، Ink Drop Spread (IDS) Operator ، Fuzzy inference system ، Artificial Neural Network ، Forgetting Factor ، modelling
نویسندگان
Sajad Haghzad Klidbary
Faculty Member
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :