Suspended Sediment Load Prediction using Artificial NeuralNetwork Integrated with the Whale Optimization Algorithm
محل انتشار: چهاردهمین کنگره ملی مهندسی عمران
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 174
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCCE14_189
تاریخ نمایه سازی: 25 مهر 1403
چکیده مقاله:
Estimating suspended sediment load (SSL) is an essential task in water resources management. This article proposes theutilization of a hybrid artificial neural network (ANN) model for predicting SSL using historical SSL data. Various inputscenarios involving streamflow (Q) and precipitation (P) were utilized to assess the performance of the ANN and ANNWhaleOptimization Algorithm (WOA) in SSL prediction at Sarab Seyedali within the Alashtar basin. Optimizationalgorithms were employed to adjust and optimize the parameters of the ANN model. Two statistical indices, the correlationcoefficient (R۲) and the root-mean-square error (RMSE), were employed to assess the accuracy of the models. Acomparison of models indicated that the integration of ANN-WOA improved the accuracy compared to the standaloneANN mode. Results Obtained from Pearson’s correlation coefficient techniques showed that the most effectiveparameters in SSL prediction are Q (t), Q (t-۱), and P (t-۱). ANN-WOA exhibited superior performance compared to ANN,achieving an R۲ value of ۰.۶۹۰ and an RMSE of ۰.۰۶۶۶.
کلیدواژه ها:
نویسندگان
Fatemeh Avazpour
Ph.D. Candidate, Department of Civil Engineering, Yazd University, Yazd, Iran.
Mohammad Reza Hadian
Assistant Professor, Department of Civil Engineering, Yazd University, Yazd, Iran.
Ali Talebi
Professor, Department of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
Ali Torabi Haghighi
Professor, Department of Water, Energy and Environmental Engineering, University of Oulu,Oulu, Finland