Suspended Sediment Load Prediction using Artificial NeuralNetwork Integrated with the Whale Optimization Algorithm

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 174

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NCCE14_189

تاریخ نمایه سازی: 25 مهر 1403

چکیده مقاله:

Estimating suspended sediment load (SSL) is an essential task in water resources management. This article proposes theutilization of a hybrid artificial neural network (ANN) model for predicting SSL using historical SSL data. Various inputscenarios involving streamflow (Q) and precipitation (P) were utilized to assess the performance of the ANN and ANNWhaleOptimization Algorithm (WOA) in SSL prediction at Sarab Seyedali within the Alashtar basin. Optimizationalgorithms were employed to adjust and optimize the parameters of the ANN model. Two statistical indices, the correlationcoefficient (R۲) and the root-mean-square error (RMSE), were employed to assess the accuracy of the models. Acomparison of models indicated that the integration of ANN-WOA improved the accuracy compared to the standaloneANN mode. Results Obtained from Pearson’s correlation coefficient techniques showed that the most effectiveparameters in SSL prediction are Q (t), Q (t-۱), and P (t-۱). ANN-WOA exhibited superior performance compared to ANN,achieving an R۲ value of ۰.۶۹۰ and an RMSE of ۰.۰۶۶۶.

نویسندگان

Fatemeh Avazpour

Ph.D. Candidate, Department of Civil Engineering, Yazd University, Yazd, Iran.

Mohammad Reza Hadian

Assistant Professor, Department of Civil Engineering, Yazd University, Yazd, Iran.

Ali Talebi

Professor, Department of Natural Resources and Desert Studies, Yazd University, Yazd, Iran

Ali Torabi Haghighi

Professor, Department of Water, Energy and Environmental Engineering, University of Oulu,Oulu, Finland