مدل پیش بینی تقاضای زنجیره تامین با تنوع محصولی بالا با استفاده از روش های یادگیری ماشین مبتنی بر تقویت گرادیان

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 76

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IUEAM-12-45_004

تاریخ نمایه سازی: 15 مهر 1403

چکیده مقاله:

پیش بینی تقاضای محصولات زنجیره تامین برای تعیین استراتژی ها و تصمیم گیری ها موضوعی بسیار با اهمیت و پرچالش است. با افزایش تنوع و تعداد محصولات، این چالش ها نیز افزایش می یابد. ارائه چارچوب ها و روش هایی که با وجود تنوع محصولی، تفاوت در کاربردها و ویژگی ها و حجم داده های مختلف، از انعطاف پذیری، دقت و مزیت های لازم برای پیش بینی همه دسته های محصولی برخوردار باشد، برای مدیران حیاتی است. در این راستا، دو مدل یادگیری با نظارت، XGBoost Regressor (XGBR) و Gradient Boosting Regressor (GBR)، بر روی مجموعه داده های Global Superstore، در سایت Kaggle پیاده‎سازی شده است. این مجموعه داده شامل ۳۷۸۸ محصول در سه Category محصولی متنوع، هفده Sub Category و۵۱،۲۹۰ سفارش است. حجم داده های محدود محصولات سبب می گردد پیش بینی بسیاری از محصولات و کسب نتیجه مناسب از روش ها میسر و مفید نگردد. با توجه به اینکه در این تحقیق تجربی هدف پیش بینی تقاضا، بکارگیری در تصمیمات استراتژیک است، رویکردی تجمیع محصولی برای این مسئله پیشنهاد شده که با توجه به مشابهت در محصولات Sub Categoryها پیش بینی آنها به صورت تفکیک شده صورت گیرد. به منظور بررسی اثر میزان داده بر عملکرد مدل ها، داده های مجموعه داده با استفاده از تکنیک Augmentation Data افزایش یافته و با اجرای مجدد مدل ها، نتایج پیش بینی دو مدل با هم مقایسه شده اند. براساس ارزیابی نتایج پیش بینی با داده های افزایش یافته با دو معیار MSE و MAE، مدل XGBR در کمترین مقدار به ترتیب به ۱۲/۰ و ۱۰/۰، و مدل GBR نیز به مقادیر ۱۳/۰ و ۱۵/۰ دست یافته است. همچنین، نتیجه معیار D۲ Score در مدل XGBR در بیشترین مقدار ۹۷/۰ و در مدل GBR مقدار ۹۶/۰ است. با افزایش داده ها، مقادیر معیارهای اندازه گیری خطای به صورت چشمگیری و تا بیش از ۸۰ درصد کاهش یافته و در داده های با حجم بیشتر، XGBR برتری نسبی دارد. چارچوب و مدل های پیشنهادی می تواند در صنایع با مسائل مشابه در سطح استراتژی استفاده شود.