Evaluation of effective geomechanical parameters in rock mass cavability using different intelligent techniques

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 215

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMGE-58-3_010

تاریخ نمایه سازی: 14 مهر 1403

چکیده مقاله:

The paper presents the results of a comprehensive investigation of the applicability of various intelligence methods for optimal prediction of rock mass caveability in block caving by using effective geomechanical parameters. However, due to the complexity of the prediction of rock mass cavability, artificial intelligence-based methods, including classification and regression tree (CART), support vector machines (SVM), and Artificial neural network (ANN), have been selected. For validating and comparing the results, common MVR was used. Because of the dependency of the modeling generality and accuracy on the number of data, we attempted to obtain an adequate database from the result of numerical modeling. The distinct element method (DEM) used to study the rock mass cavability. The results indicated that ANN is the most accurate modeling technique with a determination coefficient of ۰.۹۸۷ as compared with other aforesaid methods. Finally, the sensitivity analysis showed that joint spacing, friction angle, joint set number, and undercut depth are the most prevailing parameters of rock mass cavability. However, the joint dip has shown the minimum effect on rock mass cavability in block caving mining method.

نویسندگان

Behnam Alipenhani

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Hassan Bakhshandeh Amnieh

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abbas Majdi

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (۲۰۲۲). ...
  • . Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (۲۰۲۲). ...
  • . Alipenhani, B., Bakhshandeh Amnieh, H., & Majdi, A. (۲۰۲۳). ...
  • Investigating mechanical and geometrical effects of joints on minimum caving span in mass caving method [مقاله ژورنالی]
  • . Mawdesley, C. A. (۲۰۰۲) Predicting rock mass cavability in ...
  • . K Suzuki Morales, FT Suorineni (۲۰۱۷) Using numerical modeling ...
  • . Rafiee, R., Ataei, M., KhaloKakaie, R., Jalali, S. E., ...
  • . Laubscher, Cave Mining Handbook, (۲۰۰۰), pp. ۱–۱۳۸ ...
  • . Mawdesley, C. A. (۲۰۰۲) Predicting rock mass cavability in ...
  • Physical model simulation of block caving in jointed rock mass [مقاله ژورنالی]
  • . Alipenhani, B., Majdi, A., & Bakhshandeh Amnieh, H. (۲۰۲۴). ...
  • . Mohammadi, S., Ataei, M., & Kakaie, R. (۲۰۱۸). Assessment ...
  • . Liu, H., Ren, F., He, R., Li, G., & ...
  • . Rafiee, R., Ataei, M., Khalokakaie, R., Sereshki, F. (۲۰۱۵) ...
  • . Jabinpour, A., Yarahmadi Bafghi, A., Gholamnejad, J. (۲۰۱۸) Geostatistical ...
  • . Majdi, A., & Beiki, M. (۲۰۱۰). Evolving neural network ...
  • . Majdi, A., & Rezaei, M. (۲۰۱۳). Prediction of unconfined ...
  • . Beiki, M., Majdi, A., & Givshad, A. D. (۲۰۱۳). ...
  • . Rezaei, M., Majdi, A., & Monjezi, M. (۲۰۱۴). An ...
  • . Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, ...
  • . Mehrdanesh, A., Monjezi, M., Khandelwal, M., & Bayat, P. ...
  • . Raissi, M., Perdikaris, P., & Karniadakis, G. E. (۲۰۱۹). ...
  • . Li, Y., Hishamuddin, F. N. S., Mohammed, A. S., ...
  • . Vyazmensky, A., Elmo, D., & Stead, D. (۲۰۱۰). Role ...
  • . Sainsbury, B. (۲۰۱۲). A model for cave propagation and ...
  • . Topal, E. (۲۰۰۸). Evaluation of a mining project using ...
  • . Song, Y. Y., & Ying, L. U. (۲۰۱۵). Decision ...
  • . Wu, C. H., Ho, J. M., & Lee, D. ...
  • . Chen, G., Fu, K., Liang, Z., Sema, T., Li, ...
  • نمایش کامل مراجع