Detection and Classification of High Impedance Faults in Power Distribution Networks Using ART Neural Networks
محل انتشار: بیست و یکمین کنفرانس مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,052
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE21_701
تاریخ نمایه سازی: 27 مرداد 1392
چکیده مقاله:
Adaptive Resonance Theory (ART) neural networks have several interesting properties that make them useful in the area of pattern recognition. Many different types of ART-networks have been developed to improve clustering capabilities. In this paper, five types of ART neural networks(ART1, ART2, ART2-A, Fuzzy ART and Fuzzy ARTMAP) areapplied to detect and classify high impedance faults (HIF) in distribution networks. The features are extracted by applyingTT-transform to one cycle of fault current signal. These features include energy, standard deviation and median absolutedeviation. Then, they are applied to ART neural networks to detect and classify high impedance fault with broken conductor on gravel, asphalt and concrete, unbroken conductor on tree and also no fault condition. Finally, the results of these ART neural networks are compared with each other.
کلیدواژه ها:
نویسندگان
i Nikoofekr
Ferdowsi University of Mashhad
M. Sarlak
Jondi Shapour University
S.M Shahrtash
Center of Excellence for Power System Automation and Operation