Detection and Classification of High Impedance Faults in Power Distribution Networks Using ART Neural Networks

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,052

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE21_701

تاریخ نمایه سازی: 27 مرداد 1392

چکیده مقاله:

Adaptive Resonance Theory (ART) neural networks have several interesting properties that make them useful in the area of pattern recognition. Many different types of ART-networks have been developed to improve clustering capabilities. In this paper, five types of ART neural networks(ART1, ART2, ART2-A, Fuzzy ART and Fuzzy ARTMAP) areapplied to detect and classify high impedance faults (HIF) in distribution networks. The features are extracted by applyingTT-transform to one cycle of fault current signal. These features include energy, standard deviation and median absolutedeviation. Then, they are applied to ART neural networks to detect and classify high impedance fault with broken conductor on gravel, asphalt and concrete, unbroken conductor on tree and also no fault condition. Finally, the results of these ART neural networks are compared with each other.

نویسندگان

i Nikoofekr

Ferdowsi University of Mashhad

M. Sarlak

Jondi Shapour University

S.M Shahrtash

Center of Excellence for Power System Automation and Operation