Fuzzy Wavelet Neural Network based on Artificial Bee Colony Algorithm for Identification of Dynamic Plant
محل انتشار: بیست و یکمین کنفرانس مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,286
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE21_407
تاریخ نمایه سازی: 27 مرداد 1392
چکیده مقاله:
This paper present a Fuzzy Wavelet Neural Network (FWNN) design based on Artificial Bee Colony (ABC) Algorithm to improve the function approximationaccuracy and general capability of the FWNN. In presented FWNN, the fuzzy rules that contain wavelets are constructed. Each fuzzy rule corresponds to a sub-waveletneural network (sub-WNN) consisting of wavelets with a specified dilation value. Orthogonal least square (OLS)algorithm is used to determine the number of fuzzy rules and to purify the wavelets for each rule and ABC algorithm is suggested for learning of FWNN parameters. Thestructure is tested for the identification of the dynamic plant. Simulation results demonstrate effectiveness and ability of proposed approach. To validate the results obtained by proposed ABC, a FWNN based Shuffled Frog Leaping (SFL) algorithm is adopted from the literature and applied for comparison. The simulation study shows ABC performs well in finding the solution
نویسندگان
Mohammad Amin Heidari
Islamic Azad University, Fasa Branch, Fasa, Iran
Mohammad zaman Zamani
Najafabad Branch, Islamic Azad University
Amir Nekoubin
Young Researchers and Elite Club, Najafabad Branch