Exploring the Efficacy of Data Mining Algorithms for IoT Data Analysis

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 181

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CONFIT01_0922

تاریخ نمایه سازی: 4 مهر 1403

چکیده مقاله:

The advent of the Internet of Things (IoT) has ushered in an era of unprecedented data generation, offering opportunities for enhanced decision-making, automation, and efficiency across various domains. This paper investigates the applicability of prominent data mining algorithms for analysing IoT data, aiming to understand their effectiveness and efficiency. Through a preliminary analysis of real IoT datasets, including Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Linear Discriminant Analysis (LDA), Naïve Bayes (NB), C۴.۵, C۵.۰, Artificial Neural Networks (ANNs), and Deep Learning ANNs (DLANNs), we evaluate their performance in terms of accuracy, computational efficiency, and suitability for IoT applications. Initial findings suggest that while certain algorithms exhibit superior accuracy, others offer advantages in terms of computational efficiency. These insights contribute to a deeper understanding of the role of data mining algorithms in harnessing the potential of IoT data.

کلیدواژه ها:

Internet of Things (IoT) ، Support Vector Machine (SVM) ، K-Nearest Neighbours (KNN) ، Linear Discriminant Analysis (LDA) ، Nä۱ve Bayes (NB) ، C۴.۵ ، C۵.۰ ، Artificial Neural Networks (ANNs) ، Deep Learning ANNs (DLANNs) ، Data Mining ،

نویسندگان

Ehsan Narimani

Master of Lorestan University, PHD in Computer Software, Lorestan, Iran

Farideh Lotfi

PHD in Computer Software, Najaf Abad, Isfahan, Iran

Sepehr Yarahmadi

Bachelor student of Computer Engineering, Pole Dokhtar Higher Education Institute, Lorestan, Iran