An analysis of intrusion detection techniques for IoT network

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 43

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CONFIT01_0095

تاریخ نمایه سازی: 4 مهر 1403

چکیده مقاله:

The Internet of Things (IoT) is a rapidly expanding system with more and more devices connecting to each other. This interconnectedness presents attackers with an ever-growing range of opportunities to launch malicious activities, such as Distributed Denial of Service (DDoS) attacks, unauthorized access, and data theft. To address these threats, organizations must ensure that their IoT networks are adequately protected. Intrusion Detection Systems (IDSs) can play an important role in providing such protection by detecting and alerting organizations to suspicious or malicious activities. This paper provides an analysis of various IDS techniques for IoT networks. The paper starts with a general overview of the IoT and its security risks. It then examines the different types of IDS techniques, such as signature-based, anomaly-based, and machine learning-based techniques, and discusses their relevance to IoT networks. Finally, the paper assesses the effectiveness of each IDS technique and highlights its potential benefits and limitations.

نویسندگان

Abolfazl Omidi

Bachelor Student of Computer Engineering, Poldokhtar Institute of Higher Education, Poldokhtar, Iran