A Novel Principal Component Approach for Feature Extraction in Remotly Sensed Images
محل انتشار: بیست و یکمین کنفرانس مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,478
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE21_271
تاریخ نمایه سازی: 27 مرداد 1392
چکیده مقاله:
Lack of reliable training samples, especially in cases with broad dimensions, results in a decrease in supervised classifiers’ accuracy. One approach to solve such problem is applying feature extraction. In spite of some limitations and deficiencies when being applied, PCA and LDA are two methods, highly used in feature extraction. In this paper, a new method is proposed to rank principal components instead of arranging them in a descending order. First, using PCA method, principal components are found and instead of arranging them based on corresponding Eigen values, acquired weights used in LDA are applied. The method is not limited to a specific distribution function and it may be based on parametric and nonparametric methods. Results show that through using less number of features found by the method proposed, ML classifier’s accuracy and validity has increased
کلیدواژه ها:
نویسندگان
Azadeh Kianisarkaleh
Islamic Azad University, Science and Research Branch
Hassan Ghassemian
Tarbiat Modares University