Determining Potability Based on Heavy Metal Ion Analysis of Water using Machine Learning

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 65

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-1_011

تاریخ نمایه سازی: 2 مهر 1403

چکیده مقاله:

In this study, a comprehensive methodology for assessing water quality that integrates heavy metal pollution indices with advanced machine learning techniques was proposed, which includes Support Vector Machine (SVM), Decision Trees (DT), Random Forest, and XGBoostHcritical indicators of contamination of heavy metals. In this approach, models achieved exceptional accuracy rates. SVM demonstrates ۸۸.۵۷% accuracy, DT achieves ۹۱.۹۶% and Random Forest further enhances predictive capabilities with an accuracy of ۹۴.۱۱%. Notably, with an accuracy of ۹۳.۲۸%, XGBoost also makes a substantial contribution. This innovative approach enables real-time monitoring and proactive management of water resources, offering a robust tool for addressing environmental difficulties brought on by heavy metal pollution. By integrating machine learning algorithms, we provide insights into water quality dynamics, aiding in early detection and mitigation of contamination risks. Moreover, the inclusion of Random Forest enhances model robustness and adaptability across diverse environmental settings. This work underscores the importance of leveraging data-driven methodologies to safeguard environmental health and ensure sustainable water management practices. By combining indices with advanced machine learning techniques, we offer a scalable and effective solution for addressing water contamination challenges, thereby contributing to Improved efforts to protect the environment and better outcomes for public health.

کلیدواژه ها:

Heavy Metal Ion Contamination ، Heavy Metal Pollution Index ، heavy metal evaluation index ، Exploratory data analysis

نویسندگان

K. B. Chandrika

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), A.P, India

T. V. Babu

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), A.P, India

M. V. Subhash Reddy

Department of Artificial Intelligence and Data Science, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), A.P, India

J. L. Prasanna

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), A.P, India

M. Ravi Kumar

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), A.P, India

M. Parvez M.

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), A.P, India

C. Santhosh

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur (Dist), A.P, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zhang P, Yang M, Lan J, Huang Y, Zhang J, ...
  • Mohan SV, Nithila P, Reddy SJ. Estimation of heavy metals ...
  • Mert BK, Kasapoğulları D. A case study of using artificial ...
  • Aljarah F, Çetin A. Prediction of Water Quality with Ensemble ...
  • Toi Bissang B, Aragón-Barroso AJ, Baba G, González-López J, Osorio ...
  • Wang Y, Ho IW-H, Chen Y, Wang Y, Lin Y. ...
  • Patil V, Pawar V, Kulkarni S, Mehta T, Khare N. ...
  • Karkra R, Kumar P, Bansod BK, Krishna CR. Analysis of ...
  • Gaurav K, Kumar A, Singh P, Kumari A, Kasar M, ...
  • Fernandez-Luqueno F, Lopez-Valdez F, Gamero-Melo P, Luna-Suarez S, Aguilera-Gonzalez EN, ...
  • Edet A, Offiong O. Evaluation of water quality pollution indices ...
  • Zhu M, Wang J, Yang X, Zhang Y, Zhang L, ...
  • Ghaderpoori M, Jafari A, Ghaderpoury A, Karami M. Heavy metals ...
  • Reza R, Singh G. Heavy metal contamination and its indexing ...
  • Gholami R, Kamkar-Rouhani A, Doulati Ardejani F, Maleki S. Prediction ...
  • Azimi B, Rashno A, Fadaei S. Two-path neutrosophic fully convolutional ...
  • Binkley J, Simpson J. Heavy metals in wastewater treatment processes. ...
  • Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, ...
  • Song Y-Y, Ying L. Decision tree methods: applications for classification ...
  • Jaiswal JK, Samikannu R, editors. Application of random forest algorithm ...
  • Li J, An X, Li Q, Wang C, Yu H, ...
  • Rácz A, Bajusz D, Héberger K. Multi-level comparison of machine ...
  • Xu T, Coco G, Neale M. A predictive model of ...
  • Solanki A, Agrawal H, Khare K. Predictive analysis of water ...
  • Kaushik A, Kansal A, Kumari S, Kaushik C. Heavy metal ...
  • Davis J, Goadrich M, editors. The relationship between Precision-Recall and ...
  • Yaseen ZM. An insight into machine learning models era in ...
  • Azizi K, Ayoubi S, Nabiollahi K, Garosi Y, Gislum R. ...
  • Hanoon MS, Ammar AM, Ahmed AN, Razzaq A, Birima AH, ...
  • Agbasi JC, Egbueri JC. Intelligent soft computational models integrated for ...
  • Iqbal J, Su C, Ahmad M, Baloch MYJ, Rashid A, ...
  • De Jesus KLM, Senoro DB, Dela Cruz JC, Chan EB. ...
  • Eid MH, Eissa M, Mohamed EA, Ramadan HS, Tamás M, ...
  • Di Duca F, Montuori P, De Rosa E, De Simone ...
  • Mohammadi AA, Zarei A, Majidi S, Ghaderpoury A, Hashempour Y, ...
  • Meftah AM, Al-Majdad KQ, Elayah NA. Health Risk Assessment of ...
  • Elgeldawi E, Sayed A, Galal AR, Zaki AM, editors. Hyperparameter ...
  • Parsa AB, Movahedi A, Taghipour H, Derrible S, Mohammadian AK. ...
  • Kumar CS, Choudary MNS, Bommineni VB, Tarun G, Anjali T, ...
  • Yang Y, Yuan Y, Han Z, Liu G. Interpretability analysis ...
  • نمایش کامل مراجع