Stator Turn-to-Turn Fault Estimation of Induction Motor by Using Probabilistic Neural Network
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 111
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-1-3_005
تاریخ نمایه سازی: 2 مهر 1403
چکیده مقاله:
Induction machines are extensively used in industry due to the wide demand and diverse applications. Managing dealing with various faults, accurately detecting the fault and its severity as one of the biggest challenges will have a significant impact on the induction machine health and the quality of system operation. Ignoring the faults will cause irreparable damage to the electrical machine and then to the industrial complex. Knowing about exact fault conditions is the most basic issue in dealing with fault management. In this paper, turn to turn fault as one of the major problems of induction machines is discussed. For this purpose first, the fault is evaluated by negative sequences current, and second, a mechanism is used to distinguish between the source imbalance fault and the turn-to-turn fault. With the help of the information obtained from the faulty machine and two layers of the probabilistic neural network, the number of the turn-to-turn fault will be estimated. The simulation was performed under normal conditions as well as under fault conditions for a specified number of turn-to-turn faults. This method is tested for non-training data with different common ranges and a number of turn-to-turn faults. Neural network output results are compared with the simulation in Matlab, which shows the correct training and high accuracy of the proposed method to detect the number of stator faults.
کلیدواژه ها:
Short circuit fault ، Negative sequence current ، Probabilistic neural network ، turn to turn estimation ، Inter-turn fault
نویسندگان
Hamed Babanezhad
Faculty of Electrical Engineering, Islamic Azad University, Sari Branch, Iran
Hamid Yaghobi
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.
Mostafa Hamidi
Faculty of Electrical Engineering, Islamic Azad University, Sari Branch, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :