شناسایی مناطق امیدبخش کانی زایی طلای زایلیک شمال غرب ایران با روش برهم نهی فازی اطلاعات
محل انتشار: مجله مهندسی منابع معدنی، دوره: 9، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 134
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MHRE-9-3_001
تاریخ نمایه سازی: 26 شهریور 1403
چکیده مقاله:
هدف از این پژوهش، استفاده هم زمان از عیار طلای به دست آمده از مدل سازی های ژئوشیمیایی و پارامتر های زمین شناسی، جهت شناسایی مناطق امیدبخش کانی زایی طلای اپی ترمال منطقه زایلیک در شمال غرب ایران است. شواهد زمین شناسی مورد استفاده در این منطقه، سنگ شناسی و دگرسانی های آرژیلیکی، پروپیلیتیکی، سیلیسی و اکسید آهن بوده و در مدل سازی های ژئوشیمیایی نیز از دو روش هوش مصنوعی ۱) شبکه عصبی مصنوعی و ۲) تلفیق آن با الگوریتم کرم شب تاب استفاده شد. شواهد زمین شناسی پس از کمی شدن، به همراه مقادیر تخمین زده شده طلا در روش های هوش مصنوعی، برای وزن دهی به سیستم سلسله مراتبی در نرم افزار Expert Choise وارد شدند. در این نرم افزار وزن دهی و تعیین درجه اهمیت نسبی پارامترهای زمین شناسی پس از مشورت با متخصصان زمین شناسی و اکتشاف صورت پذیرفته و روش های هوش مصنوعی نیز با استفاده از معیارهای کمی مانند ضریب تعیین و تابع جذر میانگین مربعات خطا با یکدیگر مقایسه شدند که روش تلفیقی شبکه عصبی مصنوعی با الگوریتم کرم شب تاب، با توجه به بیشتر بودن ضریب تعیین (R۲=۰.۶۴۳) و کمتر بودن تابع خطا (RMSE=۰.۷۵۴)، نتایج بهتری را نشان داد، بنابراین از درجه اهمیت بیشتر، جهت تشخیص مناطق امید بخش کانی زایی برخوردار شد. در نهایت تمامی پارامترهای یاد شده در نرم افزار Arc GIS به وسیله روش برهم نهی فازی با یکدیگر تلفیق شده و مناطق بهینه اکتشافی در شمال و شمال شرق منطقه ثبت و ادامه اکتشاف ریشه کانی زایی طلا با توجه به مدل معرفی شده در مناطق همجوار میسر شد.
کلیدواژه ها:
نویسندگان
محمد جعفر محمد زاده
دانشیار، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز
محمد مهدی رجایی
دانشجوی دکتری ، دانشکده مهندسی معدن، دانشگاه صنعتی سهند، تبریز
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :