Assessing the Reliability of Artificial Intelligence Systems: Challenges, Metrics, and Future Directions

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 79

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIMES-4-2_001

تاریخ نمایه سازی: 25 شهریور 1403

چکیده مقاله:

Purpose: As artificial intelligence (AI) systems become integral to diverse applications, ensuring their reliability is of paramount importance. This paper explores the multifaceted landscape of AI reliability, encompassing challenges, evaluation metrics, and prospective advancements. Methodology: This paper employs a comprehensive literature review approach to assess the existing body of knowledge on the reliability of AI systems. The review aims to synthesize insights into the challenges faced in evaluating AI reliability, the metrics used for assessment, and the potential future directions in this critical research domain. Findings: In this paper, challenges in AI reliability assessment, including explainability, data quality, and susceptibility to adversarial attacks, are scrutinized. Metrics for evaluating AI reliability, such as robustness, accuracy, precision, and explainability, are also elucidated. In addition, case studies illustrate instances where AI reliability has been successfully assessed or has fallen short, offering valuable insights. Originality/value: This paper sheds light on the complexities surrounding the assessment of artificial intelligence (AI) reliability and contributes to the ongoing discourse on AI reliability by providing a comprehensive examination of its challenges, metrics, and future trajectories.Purpose: As artificial intelligence (AI) systems become integral to diverse applications, ensuring their reliability is of paramount importance. This paper explores the multifaceted landscape of AI reliability, encompassing challenges, evaluation metrics, and prospective advancements. Methodology: This paper employs a comprehensive literature review approach to assess the existing body of knowledge on the reliability of AI systems. The review aims to synthesize insights into the challenges faced in evaluating AI reliability, the metrics used for assessment, and the potential future directions in this critical research domain. Findings: In this paper, challenges in AI reliability assessment, including explainability, data quality, and susceptibility to adversarial attacks, are scrutinized. Metrics for evaluating AI reliability, such as robustness, accuracy, precision, and explainability, are also elucidated. In addition, case studies illustrate instances where AI reliability has been successfully assessed or has fallen short, offering valuable insights. Originality/value: This paper sheds light on the complexities surrounding the assessment of artificial intelligence (AI) reliability and contributes to the ongoing discourse on AI reliability by providing a comprehensive examination of its challenges, metrics, and future trajectories.

کلیدواژه ها:

Artificial Intelligence ، Reliability ، Challenges in AI Reliability Assessment ، Metrics for AI Reliability ، Explainability and Transparency ، Data Quality ، Bias

نویسندگان

Seyed Taha Hossein Mortaji *

Ph.D., Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Mohammad Ebrahim Sadeghi

Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Harnessing the Power of Business Analytics and Artificial Intelligence: A Roadmap to Data-Driven Success [مقاله ژورنالی]
  • Wieringa, M. (2020). What to account for when accounting for ...
  • Adamson, G. (2020). Explainable Artificial Intelligence (XAI): A reason to ...
  • Doshi-Velez, F. and B. Kim. (2017). Towards a rigorous science ...
  • Caruana, R., et al. (2015). Intelligible models for healthcare: Predicting ...
  • Szegedy, C., et al. (2013). Intriguing properties of neural networks. ...
  • Emmert‐Streib, F., O. Yli‐Harja, and M. Dehmer. (2020). Explainable artificial ...
  • Ning, H., et al. (2021). A survey on hybrid human-artificial ...
  • Brahma, S. and M.W. Hossain. (2019). Dark energy beyond quintessence: ...
  • Mortaji, S.T.H., M. Bagherpour, and M.M. Mazdeh. (2013). Fuzzy time-driven ...
  • Mortaji, S.T.H., R. Noorossana, and M. Bagherpour. (2015). Project completion ...
  • Newell, A. and J. Deng. (2020). How useful is self-supervised ...
  • Mortaji, S.T.H., M. Bagherpour, and S. Noori. (2013). Fuzzy earned ...
  • Lipton, Z.C. (2018). The mythos of model interpretability: In machine ...
  • Rudin, C. (2019). Stop explaining black box machine learning models ...
  • Londoño, L., et al. (2024). Fairness and bias in robot ...
  • Minh, D., et al. (2022). Explainable artificial intelligence: a comprehensive ...
  • Hu, B.C., et al. (2022). If a human can see ...
  • Ribeiro, M.T., S. Singh, and C. Guestrin. (2016). " Why ...
  • Lundberg, S.M. and S.-I. Lee. (2017). A unified approach to ...
  • Caliskan, A., J.J. Bryson, and A. Narayanan. (2017). Semantics derived ...
  • Buolamwini, J. and T. Gebru. (2018). Gender shades: Intersectional accuracy ...
  • Obermeyer, Z., et al. (2019). Dissecting racial bias in an ...
  • Gebru, T., et al. (2021). Datasheets for datasets. Communications of ...
  • Mitchell, M., et al. (2019). Model cards for model reporting. ...
  • Zou, J. and L. Schiebinger. (2018). AI can be sexist ...
  • Goodfellow, I.J., J. Shlens, and C. Szegedy. (2014). Explaining and ...
  • Papernot, N., et al. (2016). The limitations of deep learning ...
  • Athalye, A., N. Carlini, and D. Wagner. (2018). Obfuscated Gradients ...
  • Goodfellow, I., P. McDaniel, and N. Papernot. (2018). Making machine ...
  • Madry, A., et al. (2017). Towards deep learning models resistant ...
  • Hendrycks, D. and T. Dietterich. (2019). Benchmarking neural network robustness ...
  • Mortaji, S.T.H., et al. (2018). An ex ante control chart ...
  • Dou, Q., et al. (2019). Domain generalization via model-agnostic learning ...
  • Hendrycks, D., M. Mazeika, and T. Dietterich. (2018). Deep anomaly ...
  • Tan, S., et al. (2021). Reliability testing for natural language ...
  • Foody, G.M. (2023). Challenges in the real world use of ...
  • Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 ...
  • Adaptive Project Monitoring and Control with Variable Reviewing Intervals [مقاله ژورنالی]
  • Boukhlif, M., et al. (2024). Natural Language Processing-based Software Testing: ...
  • Chougule, A., et al. (2023). A Comprehensive review on limitations ...
  • Biggio, B., et al. (2013). Evasion attacks against machine learning ...
  • Carlini, N. and D. Wagner. (2017). Adversarial examples are not ...
  • Mortaji, S.T.H., S. Noori, and M. Bagherpour. (2021). Directed earned ...
  • Mortaji, S.T.H. and M. Hosseinzadeh. (2021). A competitive nature-inspired cuckoo ...
  • Gal, Y. and Z. Ghahramani. (2016). Dropout as a bayesian ...
  • Stahl, B.C., et al. (2022). A European Agency for Artificial ...
  • Regulation, P. (2016). Regulation (EU) 2016/679 of the European Parliament ...
  • Chatila, R., K. Firth-Butterfield, and J.C. Havens. (2018). Ethically aligned ...
  • Floridi, L. (2018). Soft ethics, the governance of the digital ...
  • Floridi, L., et al. (2018). AI4People—an ethical framework for a ...
  • Singh, J.A. (2019). Artificial intelligence and global health: opportunities and ...
  • نمایش کامل مراجع