How AI Changes the Game in Finance Business Models

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 66

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIMES-4-1_005

تاریخ نمایه سازی: 25 شهریور 1403

چکیده مقاله:

Purpose: This paper aims to examine the impact of AI on finance, including banking, risk management, and business models, while introducing AI-based tools. By exploring these applications, one can gain insights into the benefits of artificial intelligence in enhancing efficiency, productivity, and fostering innovation within financial sectors.Methodology: The research methodology employed in this study is a literature review. Various sources have been explored, studied, and analyzed within the financial domain to highlight the utilization of artificial intelligence. This includes risk management, identity verification, asset management, and data science applications. Furthermore, specific cases have been examined as part of case studies.Findings: The findings indicate that AI is transforming the finance industry by reshaping traditional business models and creating new growth opportunities. The integration of AI in finance has empowered companies to enhance decision-making processes, improve customer experiences, boost operational efficiency, and lower costs. AI-driven tools like predictive analytics, machine learning, and natural language processing are revolutionizing financial institutions' operations and customer interactions. As AI advances, it will play a crucial role in shaping the future of financial business models, driving competitiveness, and unlocking new industry potentials. Embracing AI technology is imperative for companies seeking to stay competitive and thrive in the dynamic financial landscape.Originality/Value: This research introduces various applications of artificial intelligence across different financial sectors alongside practical tools that can enhance the significance of this paper.Purpose: This paper aims to examine the impact of AI on finance, including banking, risk management, and business models, while introducing AI-based tools. By exploring these applications, one can gain insights into the benefits of artificial intelligence in enhancing efficiency, productivity, and fostering innovation within financial sectors. Methodology: The research methodology employed in this study is a literature review. Various sources have been explored, studied, and analyzed within the financial domain to highlight the utilization of artificial intelligence. This includes risk management, identity verification, asset management, and data science applications. Furthermore, specific cases have been examined as part of case studies. Findings: The findings indicate that AI is transforming the finance industry by reshaping traditional business models and creating new growth opportunities. The integration of AI in finance has empowered companies to enhance decision-making processes, improve customer experiences, boost operational efficiency, and lower costs. AI-driven tools like predictive analytics, machine learning, and natural language processing are revolutionizing financial institutions' operations and customer interactions. As AI advances, it will play a crucial role in shaping the future of financial business models, driving competitiveness, and unlocking new industry potentials. Embracing AI technology is imperative for companies seeking to stay competitive and thrive in the dynamic financial landscape. Originality/Value: This research introduces various applications of artificial intelligence across different financial sectors alongside practical tools that can enhance the significance of this paper.

نویسندگان

Milad Shahvaroughi Farahani *

Department of finance, khatam university, Iran, Tehran

Ghazal Ghasemi

Ph.D. researcher of public law

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Farahani, M. S., & Esfahani, A. (2022). Opportunities and challenges ...
  • Farahani, M. S., & Esfahani, A. (2022). Forecasting Startup Return ...
  • Barile, D., Secundo, G., & Bussoli, C. (2024). Exploring artificial ...
  • Jain, V. K. (2021). How Artificial Intelligence is Transforming the ...
  • Patel, K. (2023). Credit Card Analytics: A Review of Fraud ...
  • Mohajan, H. K. (2018). Qualitative research methodology in social sciences ...
  • Harnessing the Power of Business Analytics and Artificial Intelligence: A Roadmap to Data-Driven Success [مقاله ژورنالی]
  • Chishti, S., & Barberis, J. (2016). The Fintech book: The ...
  • Jourdan, Z., Corley, J. K., Valentine, R., & Tran, A. ...
  • Zakaria, S., Manaf, S. M. A., Amron, M. T., & ...
  • Farahani, M. S., Esfahani, A., Moghaddam, M. N. F., & ...
  • El Hajj, M., & Hammoud, J. (2023). Unveiling the influence ...
  • Leon, R. D. (2017). Measuring the knowledge economy: a national ...
  • Sexton, E. (2017). Economic Indices: An Analysis of the Space ...
  • Sadok, H., Sakka, F., & El Maknouzi, M. E. H. ...
  • Hunt, W. (2020). Artificial Intelligence’s Role in Finance and How ...
  • Bhatt, S., & Singh, P. (2023, September). A Comprehensive Review ...
  • Eckert, C. J. (2022). Changes in digital business model types-a ...
  • Larsen, K. R., & Becker, D. S. (2021). Automated machine ...
  • Ferencz, J., González, J. L., & García, I. O. (2022). ...
  • Macpherson, M., Gasperini, A., & Bosco, M. (2021). Implications for ...
  • Weygandt, J. J., Kimmel, P. D., & Aly, I. M. ...
  • Fields, D., & Vergerio, M. (2022). Corporate landlords and market ...
  • نمایش کامل مراجع