Wavelet-based Denoising of Magnetic Resonance Images Using Optimized Exponential Function Thresholding and Wiener Filter

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 88

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-37-12_014

تاریخ نمایه سازی: 3 شهریور 1403

چکیده مقاله:

Magnetic Resonance (MR) images have many applications in medical science and play an essential role in the diagnosis and treatment of diseases. However, unavoidable artifacts and noise reduce the resolution of these images. In this paper,  we propose a hybrid noise reduction framework using the wavelet transform, the exponential function thresholding, and the Wiener filter. In particular, we first employ the Genetic algorithm to optimize the exponential function coefficient. Furthermore, we adopt the Winner filter to increase the robustness of the proposed scheme against different types of noise, such as Gaussion and Rician noise. Some common performance measures, such as Mean Square Error (MSE) and Peak Signal-to-Noise-Ratio (PSNR), have been used to evaluate the performance of the proposed method compared to existing counterparts. The results show that the performance of the proposed hybrid method is better than the existing methods, such as universal thresholding and plain exponential function thresholding. For example, for human brain images with Gaussian noise, the obtained PSNR using the proposed method is ۵۳.۳۹۴۷, while the PSNR value is ۵۱.۷۵۳۲ using the universal threshold. Moreover, the results indicate that by using the Winner filter, we can effectively control the robustness against noise and image blurring.

نویسندگان

M. Moshfegh

Mazandaran Institute of Technology, Babol, Iran

M. Nikpour

Mazandaran Institute of Technology, Babol, Iran

M. Mobini

Mazandaran Institute of Technology, Babol, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Pourasad Y, Afkar A. A study on the modified algorithm ...
  • Rashno A, Fadaei S. Image restoration by projection onto convex ...
  • Behzadi M, Amirahmadi M, Tolou Askari M, Babaeinik M. Identification ...
  • Donoho DL. De-noising by soft-thresholding. IEEE transactions on information theory. ...
  • Hamidi H. A model for impact of organizational project benefits ...
  • Hamidi H, Vafaei A, Monadjemi A. A framework for fault ...
  • Hamidi H, Mohammadi K. Modeling fault tolerant and secure mobile ...
  • Hamidi H, Vafaei A, Monadjemi A. Algorithm based fault tolerant ...
  • Mobini M, Kaddoum G. Deep chaos synchronization. IEEE Open Journal ...
  • Wink AM, Roerdink JB. Denoising functional MR images: a comparison ...
  • Wirestam R, Bibic A, Lätt J, Brockstedt S, Ståhlberg F. ...
  • Naimi H, Adamou-Mitiche ABH, Mitiche L. Medical image denoising using ...
  • Zhang K, Zuo W, Zhang L. FFDNet: Toward a fast ...
  • Koch KM, Sherafati M, Arpinar VE, Bhave S, Ausman R, ...
  • Tian Q, Li Z, Fan Q, Polimeni JR, Bilgic B, ...
  • Tian C, Fei L, Zheng W, Xu Y, Zuo W, ...
  • Ismail B, Khan A. Image de-noising with a new threshold ...
  • Ayat S, Manzuri-Shalmani M, Dianat R. An improved wavelet-based speech ...
  • Chang SY, Wu H-C. Tensor wiener filter. IEEE Transactions on ...
  • Worth A. Internet brain segmentation repository. URL: https://www nitrc org/projects/ibsr. ...
  • نمایش کامل مراجع