Advances in Sensor Fusion: Techniques, Challenges, and Future Direction
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 165
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCT23_090
تاریخ نمایه سازی: 1 شهریور 1403
چکیده مقاله:
Sensor fusion is a critical technology that combines data from multiple sensors to provide moreaccurate, reliable, and comprehensive information. This paper presents an overview of the latestadvancements in sensor fusion techniques, emphasizing the integration of multimodal data to enhancesystem performance across various applications. We examine three primary fusion methods: data-levelfusion, feature-level fusion, and decision-level fusion. Data-level fusion involves combining raw datafrom different sensors to improve the signal-to-noise ratio, while feature-level fusion integrates featuresextracted from sensor data to form a unified representation. Decision-level fusion aggregates thedecisions from multiple classifiers to enhance the accuracy and robustness of the final output. Recentinnovations driven by machine learning, particularly deep learning and ensemble methods, havesignificantly improved the effectiveness of sensor fusion systems. The paper also explores real-timeprocessing techniques, the incorporation of edge computing, and the integration of multimodal data,highlighting their impact on applications such as autonomous vehicles, healthcare, and smart cities.Despite these advancements, challenges remain, including data heterogeneity, real-time processing,scalability, and the need for standardized frameworks. We discuss potential future directions, includingthe use of quantum computing, context-aware fusion, and the development of standardized protocols toaddress these challenges. By advancing sensor fusion techniques, we can develop more intelligent,robust, and efficient systems, driving innovation across various domains.
کلیدواژه ها:
نویسندگان
Mahdi Seyfipoor
PhD Student at School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
Amir Vahedi
Bachelor Student at School of Computer Engineering, University of Tehran, Tehran, Iran
Siamak Mohammadi
Associate Professor of Electrical and Computer Engineering, University of Tehran, Tehran, Iran