Analysis of sensitive urban form indicators of flood susceptible prediction based on machine learning models
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 84
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GJESM-10-4_002
تاریخ نمایه سازی: 27 مرداد 1403
چکیده مقاله:
BACKGROUND AND OBJECTIVES: Flooding is one of the biggest challenges affecting the economy and people's well-being. Previous studies have used several methods to analyze spatial data and deliver a more efficient flood response, including machine learning techniques to support decision-making in the urban planning process. However, different machine learning models serve different purposes depending on their learning processes and computation techniques. This study aims to develop a machine learning model for assessing flood risk zones to provide helpful information for city administration and planning and to support the well-being and resilience of the city's residents.METHODS: To develop a method for assessing flood risk zones and provide helpful information for city administration and planning. Eight urban factors were input into eleven multiclass classification algorithms to assess flood risk, and the results were displayed on a geographic information systems map.FINDINGS: The study discovered that the bagging decision tree algorithm model produced the best flood risk assessment model, with an accuracy of ۸۸.۵۸ percent compared to the government's flood simulation model results. Furthermore, rainfall, building coverage ratio, and floor area ratio were the three most important variables determining flood risk.CONCLUSION: The Bagging Decision Tree Algorithm model effectively assesses flood risk, offering valuable insights for city administration and planning. Integrating key variables such as rainfall, building coverage ratio, and floor area ratio into flood risk management strategies is crucial for mitigating the impact of floods in economically significant urban areas.
کلیدواژه ها:
نویسندگان
M. Srivanit
Urban Planning Programs, Thammasat University, Thailand
S. Pattanasri
Urban Planning Programs, Thammasat University, Thailand
N. Phichetkunbodee
Department of Civil Engineering, National Taiwan University, Taiwan
S. Manokeaw
Office of Research Administration, Chiang Mai University, Thailand
S. Sitthikankun
Department of Industrial Technology, Chiang Mai Rajabhat University, Thailand
D. Rinchumphu
Department of Civil Engineering, Chiang Mai University, Thailand
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :