Detecting dental caries with convolutional neural networks using color images
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 98
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SECONGRESS02_036
تاریخ نمایه سازی: 19 مرداد 1403
چکیده مقاله:
Oral healthcare systems have garnered significant attention due to the potential for preventive care to reduce both the cost and severity of treatments. Numerous studies have shown promising results using X-ray films for dental disease detection. However, RGB images are rarely utilized in this context. This study aims to perform object detection on specific dental abnormalities using a Convolutional Neural Network (CNN) model. Various models of YOLOv۸ were employed to compare their efficacy, with the dataset collected by a dental specialist, using an oral camera. Our results demonstrate that the YOLOv۸s model achieved a precision of ۸۴%, a recall of ۷۹%, and an mAP@۰.۵ of ۸۵%. This paper highlights the potential of using color images to develop a mobile oral healthcare system to detect dental caries and abnormalities in the future.
کلیدواژه ها:
نویسندگان
Amirreza Rouhbakhshmeghrazi
Department of Electronic Information, Northwestern Polytechnical University, Xi’An, Shaanxi, China
Amirfarshad Fazelifar
Department of Stomatology, University of Medical Sciences, Mashhad, Iran
Ghazal Alizadeh
Department of Aeronautical Structure Engineering, Northwestern Polytechnical University, Xi’An, Shaanxi, China