قطعه بندی معنایی ساختمان های شهری مبتنی بر معماری شبکه عصبی پیچشی عمیق
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 84
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCEGIT28_097
تاریخ نمایه سازی: 15 مرداد 1403
چکیده مقاله:
در این مقاله با هدف استخراج ساختمان از تصاویر با وضوح زیاد، از یک معماری شبکه عصبی پیچشی عمیق از نوع رمزگذار-رمزگشا استفاده شده است . در این مدل پیشنهادی ، لایه های پیچشی با نرخهای کمتری در مقایسه با ماژول اصلی ، اعمال شده و از پیچش گسترده به جای پیچش استاندارد استفاده گردید تا هدف دستیابی به قطعه بندی معنایی قدرتمندتر عوارض ساختمانی با اندازه کوچک و بزرگ محقق گردد. قابلیت اجرایی مدل پیشنهادی در این تحقیق با استفاده از مجموعه داده WHU ارزیابی گردید و نتایج بدست آمده نشان داد که استفاده از نرخ های آتروس کمتر و تغییر آنها به ۴، ۸ و ۱۲به طور قابل توجهی عملکرد قطعه بندی را در این مجموعه داده بهبود بخشیده است .
کلیدواژه ها:
نویسندگان
محمدعرفان امتی
گروه مهندسی نقشه برداری، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی
فاطمه طبیب محمودی
گروه مهندسی نقشه برداری، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی