Image Recreating in improving the Performance of Architectures for Person Re-identification

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-12-2_009

تاریخ نمایه سازی: 15 مرداد 1403

چکیده مقاله:

kground and Objectives: Re-identifying individuals due to its capability to match a person across non-overlapping cameras is a significant application in computer vision. However, it presents a challenging task because of the large number of pedestrians with various poses and appearances appearing at different camera viewpoints. Consequently, various learning approaches have been employed to overcome these challenges. The use of methods that can strike an appropriate balance between speed and accuracy is also a key consideration in this research.Methods: Since one of the key challenges is reducing computational costs, the initial focus is on evaluating various methods. Subsequently, improvements to these methods have been made by adding components to networks that have low computational costs. The most significant of these modifications is the addition of an Image Re-Retrieval Layer (IRL) to the Backbone network to investigate changes in accuracy. Results: Given that increasing computational speed is a fundamental goal of this work, the use of MobileNetV۲ architecture as the Backbone network has been considered. The IRL block has been designed for minimal impact on computational speed. By examining this component, specifically for the CUHK۰۳ dataset, there was a ۵% increase in mAP and a ۳% increase in @Rank۱. For the Market-۱۵۰۱ dataset, the improvement is partially evident. Comparisons with more complex architectures have shown a significant increase in computational speed in these methods.Conclusion: Reducing computational costs while increasing relative recognition accuracy are interdependent objectives. Depending on the specific context and priorities, one might emphasize one over the other when selecting an appropriate method. The changes applied in this research can lead to more optimal results in method selection, striking a balance between computational efficiency and recognition accuracy.

نویسندگان

R. Iranpoor

Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.

S. H. Zahiri

Department of Electrical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • W. Wei, W. Yang, E. Zuo, Y. Qian, L. Wang, ...
  • M. Farenzena, L. Bazzani, A. Perina, V. Murino, M. Cristani, ...
  • W. S. Zheng, S. Gong, T. Xiang, "Person re-identification by ...
  • D. Wu et al., "Deep learning-based methods for person re-identification: ...
  • Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, ...
  • Z. Zhong, L. Zheng, Z. Zheng, S. Li, Y. Yang, ...
  • H. J. Mohammed et al., "ReID-DeePNet: A hybrid deep learning ...
  • Y. Zhu et al., "Multiscale global-aware channel attention for person ...
  • L. Zhao, X. Li, Y. Zhuang, J. Wang, "Deeply-learned part-aligned ...
  • K. Zhu et al., "Aaformer: Auto-aligned transformer for person re-identification," ...
  • Y. Cho, W. J. Kim, S. Hong, S. E. Yoon, ...
  • Y. Chen, H. Wang, X. Sun, B. Fan, C. Tang, ...
  • D. Gray, H. Tao, "Viewpoint invariant pedestrian recognition with an ...
  • C. C. Loy, T. Xiang, S. Gong, "Multi-camera activity correlation ...
  • W. Li, R. Zhao, X. Wang, "Human reidentification with transferred ...
  • W. Li, R. Zhao, T. Xiao, X. Wang, "Deepreid: Deep ...
  • L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, ...
  • E. Ristani, F. Solera, R. Zou, R. Cucchiara, C. Tomasi, ...
  • X. Wang, G. Doretto, T. Sebastian, J. Rittscher, P. Tu, ...
  • M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, ...
  • J. Redmon, S. Divvala, R. Girshick, A. Farhadi, "You only ...
  • Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, ...
  • S. Targ, D. Almeida, K. Lyman, "Resnet in resnet: Generalizing ...
  • S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, ...
  • A. G. Howard et al., "Mobilenets: Efficient convolutional neural networks ...
  • J. Zang, L. Wang, Z. Liu, Q. Zhang, G. Hua, ...
  • F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, ...
  • C. Fran, "Deep learning with depth wise separable convolutions," in ...
  • M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. ...
  • Y. Sun, L. Zheng, Y. Li, Y. Yang, Q. Tian, ...
  • Y. Zhu, S. Newsam, "Densenet for dense flow," in Proc. ...
  • نمایش کامل مراجع