Land Cover prediction with Urban Sprawl Indices: Leveraging Machine Learning and Stochastic Methods

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 76

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCACS06_746

تاریخ نمایه سازی: 15 مرداد 1403

چکیده مقاله:

Urban sprawl, an inherent aspect of contemporary urbanization, necessitates precise prediction and management strategies to mitigate its adverse ramifications on urban landscapes. This study delves into the urban dynamics of Tehran, employing sophisticated machine learning methodologies and satellite imagery to scrutinize patterns of urban expansion. By leveraging the XGBoost algorithm alongside Landsat satellite images from ۲۰۱۱ and ۲۰۱۶, the research illuminates the shifting land cover configurations within the city. In the preparation of the ۲۰۲۱ land cover map, numerous urban sprawl measurement indices, including Elevation, Vertical Density, Gross Population Density, Net Population Density, Fractal Dimension, Immigration Rate, and Land Use Mix, were harnessed to train the Random Forest algorithm. This integrated approach, coupled with a Markov chain, yielded a precision of ۰.۸۸۳۸, affirming its efficacy through comparison with this year's reference map. This precision underscores the superiority of this method over the CA-Markov alternative, which achieved a precision of ۰.۸۶۵۸. By scrutinizing these methodologies and elucidating Tehran's urban sprawl dynamics, this study offers valuable insights to the academic discourse on urban management, facilitating the pursuit of sustainable development in Tehran and analogous urban contexts.

نویسندگان

Mohsen Niroomand

GIS MSc Student, School of Surveying and Geospatial Engineering, College of Engineering,University of Tehran, Tehran, Iran

Parham Pahlavani

Associate Prof., School of Surveying and Geospatial Engineering, College of Engineering,University of Tehran, Tehran, Iran

Borzoo Nazari

Assistant Prof., School of Surveying and Geospatial Engineering, College of Engineering,University of Tehran, Tehran, Iran