Accurate Autism Spectrum Disorderprediction using Support Vector Classifierbased on Federated Learning (SVCFL)
محل انتشار: اولین کنفرانس ملی پژوهش و نوآوری در هوش مصنوعی
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 61
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CRIAL01_138
تاریخ نمایه سازی: 7 مرداد 1403
چکیده مقاله:
The path to an autism diagnosis can be long and difficult, and delays can have serious consequences. Artificialintelligence can completely change the way autism is diagnosed, especially when it comes to situations where it isdifficult to see the first signs of the disease. AI-based diagnostic tools may help confirm a diagnosis or highlight theneed for further testing by analyzing large volumes of data and uncovering patterns that may not be immediatelyapparent to human evaluators. After a successful and timely diagnosis, autism can be treated through artificialintelligence using various methods. In this article, by using four datasets and gathering them with the federatedlearning method and diagnosing them with the support vector classifier method, the early diagnosis of this disorderhas been discussed. In this method, we have achieved ۹۹% accuracy for predicting autism spectrum disorder andwe have achieved ۱۳% improvement in the results
کلیدواژه ها:
نویسندگان
Ali Mohammadifar
Department of Computer Engineering, Karaj Branch, Islamic Azad University,Karaj, Iran
Hasan Samadbin
Department of Computer Engineering, Karaj Branch, Islamic Azad University,Karaj, Iran
Arman Daliri
Department of Computer Engineering, Karaj Branch, Islamic Azad University,Karaj, Iran