Hierarchical Traffic Optimization in SDN with Graph NeuralNetworks and PSO Techniques

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 85

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCPM04_063

تاریخ نمایه سازی: 13 بهمن 1403

چکیده مقاله:

Software-Defined Networking (SDN) has revolutionized how networks are managed andoptimized. However, as SDNs scale in size and complexity, traffic optimization becomesa challenging task. This paper presents a novel approach to hierarchical traffic optimizationin SDNs using Graph Neural Networks (GNNs) and Particle Swarm Optimization (PSO).By combining the topological learning capabilities of GNNs with the global optimizationpower of PSO, the proposed method aims to improve network performance in terms ofthroughput, latency, load balancing, and quality of service (QoS). The model is evaluatedthrough extensive simulations, showing significant improvements over conventional SDNtraffic management methods

نویسندگان

Somayeh Azizi

Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University,Isfahan, Iran

Mohammadreza Soltanaghaei

Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University,Isfahan, Iran

Hossein Ghaffarian

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, Iran