Hierarchical Traffic Optimization in SDN with Graph NeuralNetworks and PSO Techniques
محل انتشار: چهارمین کنفرانس بین المللی هوش مصنوعی و چشم انداز آینده آن در علوم مهندسی برق ، کامپیوتر ، مکانیک و مخابرات
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 85
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCPM04_063
تاریخ نمایه سازی: 13 بهمن 1403
چکیده مقاله:
Software-Defined Networking (SDN) has revolutionized how networks are managed andoptimized. However, as SDNs scale in size and complexity, traffic optimization becomesa challenging task. This paper presents a novel approach to hierarchical traffic optimizationin SDNs using Graph Neural Networks (GNNs) and Particle Swarm Optimization (PSO).By combining the topological learning capabilities of GNNs with the global optimizationpower of PSO, the proposed method aims to improve network performance in terms ofthroughput, latency, load balancing, and quality of service (QoS). The model is evaluatedthrough extensive simulations, showing significant improvements over conventional SDNtraffic management methods
کلیدواژه ها:
Software-Defined Networking (SDN) ، Traffic Optimization ، Graph NeuralNetworks (GNNs) ، Particle Swarm Optimization (PSO) ، Hierarchical Optimization ، LoadBalancing ، QoS ، Routing
نویسندگان
Somayeh Azizi
Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University,Isfahan, Iran
Mohammadreza Soltanaghaei
Department of Computer Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University,Isfahan, Iran
Hossein Ghaffarian
Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, Iran