Machine Learning based Analysis and Effective Visualization of Mutual Funds Through CUSUM and Clustering

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 104

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBDSR-3-1_004

تاریخ نمایه سازی: 27 تیر 1403

چکیده مقاله:

This research paper aims to present an extensive analysis of Large-cap class-A mutual funds spanning a period of ۲۵ years. Using this historical data, the study presents the readers with the observed patterns and trends in these mutual funds. The data has been sourced from two major data repositories for mutual fund and finance data - WRDS (Wharton Research Data Services) and YF (Yahoo Finance). The study uses statistical methodologies like Sharpe Ratio and Volatility and analytical methodologies like CUSUM and Clustering. Along with this quantitative analysis, the paper also encompasses qualitative data like Assets Under Management, Turnover Ratio, and Management Information for all the funds used. This helps gain insights into the influence of these factors on the performance of the mutual funds. This paper mainly discusses how all the aforementioned factors influence the mutual fund trajectories with the help of effective visualizations and machine learning-based analysis over ۲۵ years, hence developing an efficient pipeline.This research paper aims to present an extensive analysis of Large-cap class-A mutual funds spanning a period of ۲۵ years. Using this historical data, the study presents the readers with the observed patterns and trends in these mutual funds. The data has been sourced from two major data repositories for mutual fund and finance data - WRDS (Wharton Research Data Services) and YF (Yahoo Finance). The study uses statistical methodologies like Sharpe Ratio and Volatility and analytical methodologies like CUSUM and Clustering. Along with this quantitative analysis, the paper also encompasses qualitative data like Assets Under Management, Turnover Ratio, and Management Information for all the funds used. This helps gain insights into the influence of these factors on the performance of the mutual funds. This paper mainly discusses how all the aforementioned factors influence the mutual fund trajectories with the help of effective visualizations and machine learning-based analysis over ۲۵ years, hence developing an efficient pipeline.

کلیدواژه ها:

Mutual Fund Performance ، CUSUM ، Machine Learning ، Clustering ، Visualization of Mutual Funds

نویسندگان

Aditya Maheshwari

Department of Computer Science, Metropolitan College, Boston University, Boston, USA

Vaidehi Shah

Department of Computer Science, Metropolitan College, Boston University, Boston, USA

Aakansha Sawhney

Department of Computer Science, Metropolitan College, Boston University, Boston, USA

Eugene Pinsky

Department of Computer Science, Metropolitan College, Boston University, Boston, USA

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bishop, C. M., 1995. Neural networks for pattern recognition. s.l.:Oxford ...
  • Busse, J. A. a. T. Q., 2012. Mutual Fund Industry ...
  • Daniel C. Indro, C. X. J. M. Y. H. a. ...
  • Daniel C. Indro, C. X. J. M. Y. H. a. ...
  • Doshi, H. a. E. R. a. S. M., 2015. Managerial ...
  • Dreman, D., 1998. Contrarian Investment Strategies: The Classic Edition. s.l.:Free ...
  • Droms, W. G. a. W. D. A., 1996. Mutual fund ...
  • Droms, W. G. a. W. D. A., 2001. Persistence of ...
  • Eger, G. J. A. a. P. G. B. a. C. ...
  • Elton, E. J. G. M. J. &. B. C. R. ...
  • Fama, E. a. F. K. 1., 1992. Fama, Eugene F., ...
  • Fan, Y., 2018. Position adjusted turnover ratio and mutual fund ...
  • Faust, M. E. a. R., 2010. The performance of hedge ...
  • Grinblatt, M. a. T. S., 1989. Mutual fund performance: An ...
  • Grinblatt, M. a. T. S., 1994. A Study of Monthly ...
  • Grinblatt, M. a. T. S., 1994. A Study of Monthly ...
  • imrohoroglu, G. D. S. a. S., 1997. Stock returns and ...
  • imrohoroglu, G. D. S. a. S., 1997. Stock returns and ...
  • imrohoroglu, G. D. S. a. S., 1997. Stock returns and ...
  • imrohoroglu, G. D. S. a. S., 1997. Stock returns and ...
  • imrohoroglu, G. D. S. a. S., 1997. Stock returns and ...
  • Jamal Alsakran, Y. Z. a. X. Z., 2009. Visual Analysis ...
  • Kavajecz, A. B. a. M. W. B. a. J. C. ...
  • Lam, K. a. Y. H., 1997. Cusum Techniques for Technical ...
  • Li Chen, S. H. a. S. Z., 2011. When all ...
  • Malkiel, B. G., 2024. A random walk down Wall Street. ...
  • Mateus, I. B. a. M. C. a. T. N., 2017. ...
  • Nanda, V. K. Z. J. W. a. L. Z., 2009. ...
  • Nokeri, T. C., 2021. Implementing Machine Learning for Finance. s.l.:Springer. ...
  • Pouliot, R. H. a. K. P. a. W., 2021. Do ...
  • Rakowski, D., 2010. Fund Flow Volatility and Performance. Journal of ...
  • Ren, F. L. Y. N. L. S. P. J. X. ...
  • Ren, F. L. Y. N. L. S. P. J. X. ...
  • Sainz, P. G.-C. a. L. M. D. a. J., 2019. ...
  • Sensoy, B. A., 2009. Performance evaluation and self-designated benchmark indexes ...
  • Sharpe, W. F., 1966. Mutual Fund Performance. The Journal of ...
  • Siegel, L. B., 2003. Benchmarks and investment management. s.l.:Research Foundation ...
  • Tessaromatis, T. A. a. D. G. a. N., 2013. Revisiting ...
  • Titman, M. G. a. S., 1989. Mutual Fund Performance: An ...
  • Treynor, J. &. M. K., 1966. Can mutual funds outguess ...
  • Weigand, F. D. a. R. A., 1998. Explaining persistence in ...
  • Wermers, K. D. a. M. G. a. S. T. a. ...
  • Zhang, L., 2021. Uncovering mutual fund private information with machine ...
  • Zvi Bodie, A. K. a. A. M., 2022. Essentials of ...
  • نمایش کامل مراجع